Correct a formatting issue (Carlo Marcelo Arenas Belon).
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item MusicPal (MV88W8618 ARM processor)
91 @end itemize
92
93 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
94
95 @node Installation
96 @chapter Installation
97
98 If you want to compile QEMU yourself, see @ref{compilation}.
99
100 @menu
101 * install_linux::   Linux
102 * install_windows:: Windows
103 * install_mac::     Macintosh
104 @end menu
105
106 @node install_linux
107 @section Linux
108
109 If a precompiled package is available for your distribution - you just
110 have to install it. Otherwise, see @ref{compilation}.
111
112 @node install_windows
113 @section Windows
114
115 Download the experimental binary installer at
116 @url{http://www.free.oszoo.org/@/download.html}.
117
118 @node install_mac
119 @section Mac OS X
120
121 Download the experimental binary installer at
122 @url{http://www.free.oszoo.org/@/download.html}.
123
124 @node QEMU PC System emulator
125 @chapter QEMU PC System emulator
126
127 @menu
128 * pcsys_introduction:: Introduction
129 * pcsys_quickstart::   Quick Start
130 * sec_invocation::     Invocation
131 * pcsys_keys::         Keys
132 * pcsys_monitor::      QEMU Monitor
133 * disk_images::        Disk Images
134 * pcsys_network::      Network emulation
135 * direct_linux_boot::  Direct Linux Boot
136 * pcsys_usb::          USB emulation
137 * vnc_security::       VNC security
138 * gdb_usage::          GDB usage
139 * pcsys_os_specific::  Target OS specific information
140 @end menu
141
142 @node pcsys_introduction
143 @section Introduction
144
145 @c man begin DESCRIPTION
146
147 The QEMU PC System emulator simulates the
148 following peripherals:
149
150 @itemize @minus
151 @item
152 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
153 @item
154 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
155 extensions (hardware level, including all non standard modes).
156 @item
157 PS/2 mouse and keyboard
158 @item
159 2 PCI IDE interfaces with hard disk and CD-ROM support
160 @item
161 Floppy disk
162 @item
163 PCI/ISA PCI network adapters
164 @item
165 Serial ports
166 @item
167 Creative SoundBlaster 16 sound card
168 @item
169 ENSONIQ AudioPCI ES1370 sound card
170 @item
171 Intel 82801AA AC97 Audio compatible sound card
172 @item
173 Adlib(OPL2) - Yamaha YM3812 compatible chip
174 @item
175 Gravis Ultrasound GF1 sound card
176 @item
177 PCI UHCI USB controller and a virtual USB hub.
178 @end itemize
179
180 SMP is supported with up to 255 CPUs.
181
182 Note that adlib, ac97 and gus are only available when QEMU was configured
183 with --enable-adlib, --enable-ac97 or --enable-gus respectively.
184
185 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
186 VGA BIOS.
187
188 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
189
190 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
191 by Tibor "TS" Schütz.
192
193 @c man end
194
195 @node pcsys_quickstart
196 @section Quick Start
197
198 Download and uncompress the linux image (@file{linux.img}) and type:
199
200 @example
201 qemu linux.img
202 @end example
203
204 Linux should boot and give you a prompt.
205
206 @node sec_invocation
207 @section Invocation
208
209 @example
210 @c man begin SYNOPSIS
211 usage: qemu [options] [@var{disk_image}]
212 @c man end
213 @end example
214
215 @c man begin OPTIONS
216 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
217
218 General options:
219 @table @option
220 @item -M @var{machine}
221 Select the emulated @var{machine} (@code{-M ?} for list)
222
223 @item -fda @var{file}
224 @item -fdb @var{file}
225 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
226 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
227
228 @item -hda @var{file}
229 @item -hdb @var{file}
230 @item -hdc @var{file}
231 @item -hdd @var{file}
232 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
233
234 @item -cdrom @var{file}
235 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
236 @option{-cdrom} at the same time). You can use the host CD-ROM by
237 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
238
239 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
240
241 Define a new drive. Valid options are:
242
243 @table @code
244 @item file=@var{file}
245 This option defines which disk image (@pxref{disk_images}) to use with
246 this drive. If the filename contains comma, you must double it
247 (for instance, "file=my,,file" to use file "my,file").
248 @item if=@var{interface}
249 This option defines on which type on interface the drive is connected.
250 Available types are: ide, scsi, sd, mtd, floppy, pflash.
251 @item bus=@var{bus},unit=@var{unit}
252 These options define where is connected the drive by defining the bus number and
253 the unit id.
254 @item index=@var{index}
255 This option defines where is connected the drive by using an index in the list
256 of available connectors of a given interface type.
257 @item media=@var{media}
258 This option defines the type of the media: disk or cdrom.
259 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
260 These options have the same definition as they have in @option{-hdachs}.
261 @item snapshot=@var{snapshot}
262 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
263 @item cache=@var{cache}
264 @var{cache} is "on" or "off" and allows to disable host cache to access data.
265 @item format=@var{format}
266 Specify which disk @var{format} will be used rather than detecting
267 the format.  Can be used to specifiy format=raw to avoid interpreting
268 an untrusted format header.
269 @end table
270
271 Instead of @option{-cdrom} you can use:
272 @example
273 qemu -drive file=file,index=2,media=cdrom
274 @end example
275
276 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
277 use:
278 @example
279 qemu -drive file=file,index=0,media=disk
280 qemu -drive file=file,index=1,media=disk
281 qemu -drive file=file,index=2,media=disk
282 qemu -drive file=file,index=3,media=disk
283 @end example
284
285 You can connect a CDROM to the slave of ide0:
286 @example
287 qemu -drive file=file,if=ide,index=1,media=cdrom
288 @end example
289
290 If you don't specify the "file=" argument, you define an empty drive:
291 @example
292 qemu -drive if=ide,index=1,media=cdrom
293 @end example
294
295 You can connect a SCSI disk with unit ID 6 on the bus #0:
296 @example
297 qemu -drive file=file,if=scsi,bus=0,unit=6
298 @end example
299
300 Instead of @option{-fda}, @option{-fdb}, you can use:
301 @example
302 qemu -drive file=file,index=0,if=floppy
303 qemu -drive file=file,index=1,if=floppy
304 @end example
305
306 By default, @var{interface} is "ide" and @var{index} is automatically
307 incremented:
308 @example
309 qemu -drive file=a -drive file=b"
310 @end example
311 is interpreted like:
312 @example
313 qemu -hda a -hdb b
314 @end example
315
316 @item -boot [a|c|d|n]
317 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
318 is the default.
319
320 @item -snapshot
321 Write to temporary files instead of disk image files. In this case,
322 the raw disk image you use is not written back. You can however force
323 the write back by pressing @key{C-a s} (@pxref{disk_images}).
324
325 @item -no-fd-bootchk
326 Disable boot signature checking for floppy disks in Bochs BIOS. It may
327 be needed to boot from old floppy disks.
328
329 @item -m @var{megs}
330 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
331 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
332 gigabytes respectively.
333
334 @item -smp @var{n}
335 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
336 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
337 to 4.
338
339 @item -audio-help
340
341 Will show the audio subsystem help: list of drivers, tunable
342 parameters.
343
344 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
345
346 Enable audio and selected sound hardware. Use ? to print all
347 available sound hardware.
348
349 @example
350 qemu -soundhw sb16,adlib hda
351 qemu -soundhw es1370 hda
352 qemu -soundhw ac97 hda
353 qemu -soundhw all hda
354 qemu -soundhw ?
355 @end example
356
357 Note that Linux's i810_audio OSS kernel (for AC97) module might
358 require manually specifying clocking.
359
360 @example
361 modprobe i810_audio clocking=48000
362 @end example
363
364 @item -localtime
365 Set the real time clock to local time (the default is to UTC
366 time). This option is needed to have correct date in MS-DOS or
367 Windows.
368
369 @item -startdate @var{date}
370 Set the initial date of the real time clock. Valid format for
371 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
372 @code{2006-06-17}. The default value is @code{now}.
373
374 @item -pidfile @var{file}
375 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
376 from a script.
377
378 @item -daemonize
379 Daemonize the QEMU process after initialization.  QEMU will not detach from
380 standard IO until it is ready to receive connections on any of its devices.
381 This option is a useful way for external programs to launch QEMU without having
382 to cope with initialization race conditions.
383
384 @item -win2k-hack
385 Use it when installing Windows 2000 to avoid a disk full bug. After
386 Windows 2000 is installed, you no longer need this option (this option
387 slows down the IDE transfers).
388
389 @item -option-rom @var{file}
390 Load the contents of @var{file} as an option ROM.
391 This option is useful to load things like EtherBoot.
392
393 @item -name @var{name}
394 Sets the @var{name} of the guest.
395 This name will be display in the SDL window caption.
396 The @var{name} will also be used for the VNC server.
397
398 @end table
399
400 Display options:
401 @table @option
402
403 @item -nographic
404
405 Normally, QEMU uses SDL to display the VGA output. With this option,
406 you can totally disable graphical output so that QEMU is a simple
407 command line application. The emulated serial port is redirected on
408 the console. Therefore, you can still use QEMU to debug a Linux kernel
409 with a serial console.
410
411 @item -curses
412
413 Normally, QEMU uses SDL to display the VGA output.  With this option,
414 QEMU can display the VGA output when in text mode using a 
415 curses/ncurses interface.  Nothing is displayed in graphical mode.
416
417 @item -no-frame
418
419 Do not use decorations for SDL windows and start them using the whole
420 available screen space. This makes the using QEMU in a dedicated desktop
421 workspace more convenient.
422
423 @item -no-quit
424
425 Disable SDL window close capability.
426
427 @item -full-screen
428 Start in full screen.
429
430 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
431
432 Normally, QEMU uses SDL to display the VGA output.  With this option,
433 you can have QEMU listen on VNC display @var{display} and redirect the VGA
434 display over the VNC session.  It is very useful to enable the usb
435 tablet device when using this option (option @option{-usbdevice
436 tablet}). When using the VNC display, you must use the @option{-k}
437 parameter to set the keyboard layout if you are not using en-us. Valid
438 syntax for the @var{display} is
439
440 @table @code
441
442 @item @var{host}:@var{d}
443
444 TCP connections will only be allowed from @var{host} on display @var{d}.
445 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
446 be omitted in which case the server will accept connections from any host.
447
448 @item @code{unix}:@var{path}
449
450 Connections will be allowed over UNIX domain sockets where @var{path} is the
451 location of a unix socket to listen for connections on.
452
453 @item none
454
455 VNC is initialized but not started. The monitor @code{change} command
456 can be used to later start the VNC server.
457
458 @end table
459
460 Following the @var{display} value there may be one or more @var{option} flags
461 separated by commas. Valid options are
462
463 @table @code
464
465 @item reverse
466
467 Connect to a listening VNC client via a ``reverse'' connection. The
468 client is specified by the @var{display}. For reverse network
469 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
470 is a TCP port number, not a display number.
471
472 @item password
473
474 Require that password based authentication is used for client connections.
475 The password must be set separately using the @code{change} command in the
476 @ref{pcsys_monitor}
477
478 @item tls
479
480 Require that client use TLS when communicating with the VNC server. This
481 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
482 attack. It is recommended that this option be combined with either the
483 @var{x509} or @var{x509verify} options.
484
485 @item x509=@var{/path/to/certificate/dir}
486
487 Valid if @option{tls} is specified. Require that x509 credentials are used
488 for negotiating the TLS session. The server will send its x509 certificate
489 to the client. It is recommended that a password be set on the VNC server
490 to provide authentication of the client when this is used. The path following
491 this option specifies where the x509 certificates are to be loaded from.
492 See the @ref{vnc_security} section for details on generating certificates.
493
494 @item x509verify=@var{/path/to/certificate/dir}
495
496 Valid if @option{tls} is specified. Require that x509 credentials are used
497 for negotiating the TLS session. The server will send its x509 certificate
498 to the client, and request that the client send its own x509 certificate.
499 The server will validate the client's certificate against the CA certificate,
500 and reject clients when validation fails. If the certificate authority is
501 trusted, this is a sufficient authentication mechanism. You may still wish
502 to set a password on the VNC server as a second authentication layer. The
503 path following this option specifies where the x509 certificates are to
504 be loaded from. See the @ref{vnc_security} section for details on generating
505 certificates.
506
507 @end table
508
509 @item -k @var{language}
510
511 Use keyboard layout @var{language} (for example @code{fr} for
512 French). This option is only needed where it is not easy to get raw PC
513 keycodes (e.g. on Macs, with some X11 servers or with a VNC
514 display). You don't normally need to use it on PC/Linux or PC/Windows
515 hosts.
516
517 The available layouts are:
518 @example
519 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
520 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
521 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
522 @end example
523
524 The default is @code{en-us}.
525
526 @end table
527
528 USB options:
529 @table @option
530
531 @item -usb
532 Enable the USB driver (will be the default soon)
533
534 @item -usbdevice @var{devname}
535 Add the USB device @var{devname}. @xref{usb_devices}.
536
537 @table @code
538
539 @item mouse
540 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
541
542 @item tablet
543 Pointer device that uses absolute coordinates (like a touchscreen). This
544 means qemu is able to report the mouse position without having to grab the
545 mouse. Also overrides the PS/2 mouse emulation when activated.
546
547 @item disk:file
548 Mass storage device based on file
549
550 @item host:bus.addr
551 Pass through the host device identified by bus.addr (Linux only).
552
553 @item host:vendor_id:product_id
554 Pass through the host device identified by vendor_id:product_id (Linux only).
555
556 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
557 Serial converter to host character device @var{dev}, see @code{-serial} for the
558 available devices.
559
560 @item braille
561 Braille device.  This will use BrlAPI to display the braille output on a real
562 or fake device.
563
564 @end table
565
566 @end table
567
568 Network options:
569
570 @table @option
571
572 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
573 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
574 = 0 is the default). The NIC is an ne2k_pci by default on the PC
575 target. Optionally, the MAC address can be changed. If no
576 @option{-net} option is specified, a single NIC is created.
577 Qemu can emulate several different models of network card.
578 Valid values for @var{type} are
579 @code{i82551}, @code{i82557b}, @code{i82559er},
580 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
581 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
582 Not all devices are supported on all targets.  Use -net nic,model=?
583 for a list of available devices for your target.
584
585 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
586 Use the user mode network stack which requires no administrator
587 privilege to run.  @option{hostname=name} can be used to specify the client
588 hostname reported by the builtin DHCP server.
589
590 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
591 Connect the host TAP network interface @var{name} to VLAN @var{n} and
592 use the network script @var{file} to configure it. The default
593 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
594 disable script execution. If @var{name} is not
595 provided, the OS automatically provides one. @option{fd}=@var{h} can be
596 used to specify the handle of an already opened host TAP interface. Example:
597
598 @example
599 qemu linux.img -net nic -net tap
600 @end example
601
602 More complicated example (two NICs, each one connected to a TAP device)
603 @example
604 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
605                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
606 @end example
607
608
609 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
610
611 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
612 machine using a TCP socket connection. If @option{listen} is
613 specified, QEMU waits for incoming connections on @var{port}
614 (@var{host} is optional). @option{connect} is used to connect to
615 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
616 specifies an already opened TCP socket.
617
618 Example:
619 @example
620 # launch a first QEMU instance
621 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
622                -net socket,listen=:1234
623 # connect the VLAN 0 of this instance to the VLAN 0
624 # of the first instance
625 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
626                -net socket,connect=127.0.0.1:1234
627 @end example
628
629 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
630
631 Create a VLAN @var{n} shared with another QEMU virtual
632 machines using a UDP multicast socket, effectively making a bus for
633 every QEMU with same multicast address @var{maddr} and @var{port}.
634 NOTES:
635 @enumerate
636 @item
637 Several QEMU can be running on different hosts and share same bus (assuming
638 correct multicast setup for these hosts).
639 @item
640 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
641 @url{http://user-mode-linux.sf.net}.
642 @item
643 Use @option{fd=h} to specify an already opened UDP multicast socket.
644 @end enumerate
645
646 Example:
647 @example
648 # launch one QEMU instance
649 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
650                -net socket,mcast=230.0.0.1:1234
651 # launch another QEMU instance on same "bus"
652 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
653                -net socket,mcast=230.0.0.1:1234
654 # launch yet another QEMU instance on same "bus"
655 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
656                -net socket,mcast=230.0.0.1:1234
657 @end example
658
659 Example (User Mode Linux compat.):
660 @example
661 # launch QEMU instance (note mcast address selected
662 # is UML's default)
663 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
664                -net socket,mcast=239.192.168.1:1102
665 # launch UML
666 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
667 @end example
668
669 @item -net none
670 Indicate that no network devices should be configured. It is used to
671 override the default configuration (@option{-net nic -net user}) which
672 is activated if no @option{-net} options are provided.
673
674 @item -tftp @var{dir}
675 When using the user mode network stack, activate a built-in TFTP
676 server. The files in @var{dir} will be exposed as the root of a TFTP server.
677 The TFTP client on the guest must be configured in binary mode (use the command
678 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
679 usual 10.0.2.2.
680
681 @item -bootp @var{file}
682 When using the user mode network stack, broadcast @var{file} as the BOOTP
683 filename.  In conjunction with @option{-tftp}, this can be used to network boot
684 a guest from a local directory.
685
686 Example (using pxelinux):
687 @example
688 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
689 @end example
690
691 @item -smb @var{dir}
692 When using the user mode network stack, activate a built-in SMB
693 server so that Windows OSes can access to the host files in @file{@var{dir}}
694 transparently.
695
696 In the guest Windows OS, the line:
697 @example
698 10.0.2.4 smbserver
699 @end example
700 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
701 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
702
703 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
704
705 Note that a SAMBA server must be installed on the host OS in
706 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
707 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
708
709 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
710
711 When using the user mode network stack, redirect incoming TCP or UDP
712 connections to the host port @var{host-port} to the guest
713 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
714 is not specified, its value is 10.0.2.15 (default address given by the
715 built-in DHCP server).
716
717 For example, to redirect host X11 connection from screen 1 to guest
718 screen 0, use the following:
719
720 @example
721 # on the host
722 qemu -redir tcp:6001::6000 [...]
723 # this host xterm should open in the guest X11 server
724 xterm -display :1
725 @end example
726
727 To redirect telnet connections from host port 5555 to telnet port on
728 the guest, use the following:
729
730 @example
731 # on the host
732 qemu -redir tcp:5555::23 [...]
733 telnet localhost 5555
734 @end example
735
736 Then when you use on the host @code{telnet localhost 5555}, you
737 connect to the guest telnet server.
738
739 @end table
740
741 Linux boot specific: When using these options, you can use a given
742 Linux kernel without installing it in the disk image. It can be useful
743 for easier testing of various kernels.
744
745 @table @option
746
747 @item -kernel @var{bzImage}
748 Use @var{bzImage} as kernel image.
749
750 @item -append @var{cmdline}
751 Use @var{cmdline} as kernel command line
752
753 @item -initrd @var{file}
754 Use @var{file} as initial ram disk.
755
756 @end table
757
758 Debug/Expert options:
759 @table @option
760
761 @item -serial @var{dev}
762 Redirect the virtual serial port to host character device
763 @var{dev}. The default device is @code{vc} in graphical mode and
764 @code{stdio} in non graphical mode.
765
766 This option can be used several times to simulate up to 4 serials
767 ports.
768
769 Use @code{-serial none} to disable all serial ports.
770
771 Available character devices are:
772 @table @code
773 @item vc[:WxH]
774 Virtual console. Optionally, a width and height can be given in pixel with
775 @example
776 vc:800x600
777 @end example
778 It is also possible to specify width or height in characters:
779 @example
780 vc:80Cx24C
781 @end example
782 @item pty
783 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
784 @item none
785 No device is allocated.
786 @item null
787 void device
788 @item /dev/XXX
789 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
790 parameters are set according to the emulated ones.
791 @item /dev/parport@var{N}
792 [Linux only, parallel port only] Use host parallel port
793 @var{N}. Currently SPP and EPP parallel port features can be used.
794 @item file:@var{filename}
795 Write output to @var{filename}. No character can be read.
796 @item stdio
797 [Unix only] standard input/output
798 @item pipe:@var{filename}
799 name pipe @var{filename}
800 @item COM@var{n}
801 [Windows only] Use host serial port @var{n}
802 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
803 This implements UDP Net Console.
804 When @var{remote_host} or @var{src_ip} are not specified
805 they default to @code{0.0.0.0}.
806 When not using a specified @var{src_port} a random port is automatically chosen.
807
808 If you just want a simple readonly console you can use @code{netcat} or
809 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
810 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
811 will appear in the netconsole session.
812
813 If you plan to send characters back via netconsole or you want to stop
814 and start qemu a lot of times, you should have qemu use the same
815 source port each time by using something like @code{-serial
816 udp::4555@@:4556} to qemu. Another approach is to use a patched
817 version of netcat which can listen to a TCP port and send and receive
818 characters via udp.  If you have a patched version of netcat which
819 activates telnet remote echo and single char transfer, then you can
820 use the following options to step up a netcat redirector to allow
821 telnet on port 5555 to access the qemu port.
822 @table @code
823 @item Qemu Options:
824 -serial udp::4555@@:4556
825 @item netcat options:
826 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
827 @item telnet options:
828 localhost 5555
829 @end table
830
831
832 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
833 The TCP Net Console has two modes of operation.  It can send the serial
834 I/O to a location or wait for a connection from a location.  By default
835 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
836 the @var{server} option QEMU will wait for a client socket application
837 to connect to the port before continuing, unless the @code{nowait}
838 option was specified.  The @code{nodelay} option disables the Nagle buffering
839 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
840 one TCP connection at a time is accepted. You can use @code{telnet} to
841 connect to the corresponding character device.
842 @table @code
843 @item Example to send tcp console to 192.168.0.2 port 4444
844 -serial tcp:192.168.0.2:4444
845 @item Example to listen and wait on port 4444 for connection
846 -serial tcp::4444,server
847 @item Example to not wait and listen on ip 192.168.0.100 port 4444
848 -serial tcp:192.168.0.100:4444,server,nowait
849 @end table
850
851 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
852 The telnet protocol is used instead of raw tcp sockets.  The options
853 work the same as if you had specified @code{-serial tcp}.  The
854 difference is that the port acts like a telnet server or client using
855 telnet option negotiation.  This will also allow you to send the
856 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
857 sequence.  Typically in unix telnet you do it with Control-] and then
858 type "send break" followed by pressing the enter key.
859
860 @item unix:@var{path}[,server][,nowait]
861 A unix domain socket is used instead of a tcp socket.  The option works the
862 same as if you had specified @code{-serial tcp} except the unix domain socket
863 @var{path} is used for connections.
864
865 @item mon:@var{dev_string}
866 This is a special option to allow the monitor to be multiplexed onto
867 another serial port.  The monitor is accessed with key sequence of
868 @key{Control-a} and then pressing @key{c}. See monitor access
869 @ref{pcsys_keys} in the -nographic section for more keys.
870 @var{dev_string} should be any one of the serial devices specified
871 above.  An example to multiplex the monitor onto a telnet server
872 listening on port 4444 would be:
873 @table @code
874 @item -serial mon:telnet::4444,server,nowait
875 @end table
876
877 @item braille
878 Braille device.  This will use BrlAPI to display the braille output on a real
879 or fake device.
880
881 @end table
882
883 @item -parallel @var{dev}
884 Redirect the virtual parallel port to host device @var{dev} (same
885 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
886 be used to use hardware devices connected on the corresponding host
887 parallel port.
888
889 This option can be used several times to simulate up to 3 parallel
890 ports.
891
892 Use @code{-parallel none} to disable all parallel ports.
893
894 @item -monitor @var{dev}
895 Redirect the monitor to host device @var{dev} (same devices as the
896 serial port).
897 The default device is @code{vc} in graphical mode and @code{stdio} in
898 non graphical mode.
899
900 @item -echr numeric_ascii_value
901 Change the escape character used for switching to the monitor when using
902 monitor and serial sharing.  The default is @code{0x01} when using the
903 @code{-nographic} option.  @code{0x01} is equal to pressing
904 @code{Control-a}.  You can select a different character from the ascii
905 control keys where 1 through 26 map to Control-a through Control-z.  For
906 instance you could use the either of the following to change the escape
907 character to Control-t.
908 @table @code
909 @item -echr 0x14
910 @item -echr 20
911 @end table
912
913 @item -s
914 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
915 @item -p @var{port}
916 Change gdb connection port.  @var{port} can be either a decimal number
917 to specify a TCP port, or a host device (same devices as the serial port).
918 @item -S
919 Do not start CPU at startup (you must type 'c' in the monitor).
920 @item -d
921 Output log in /tmp/qemu.log
922 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
923 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
924 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
925 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
926 all those parameters. This option is useful for old MS-DOS disk
927 images.
928
929 @item -L path
930 Set the directory for the BIOS, VGA BIOS and keymaps.
931
932 @item -std-vga
933 Simulate a standard VGA card with Bochs VBE extensions (default is
934 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
935 VBE extensions (e.g. Windows XP) and if you want to use high
936 resolution modes (>= 1280x1024x16) then you should use this option.
937
938 @item -no-acpi
939 Disable ACPI (Advanced Configuration and Power Interface) support. Use
940 it if your guest OS complains about ACPI problems (PC target machine
941 only).
942
943 @item -no-reboot
944 Exit instead of rebooting.
945
946 @item -no-shutdown
947 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
948 This allows for instance switching to monitor to commit changes to the
949 disk image.
950
951 @item -loadvm file
952 Start right away with a saved state (@code{loadvm} in monitor)
953
954 @item -semihosting
955 Enable semihosting syscall emulation (ARM and M68K target machines only).
956
957 On ARM this implements the "Angel" interface.
958 On M68K this implements the "ColdFire GDB" interface used by libgloss.
959
960 Note that this allows guest direct access to the host filesystem,
961 so should only be used with trusted guest OS.
962 @end table
963
964 @c man end
965
966 @node pcsys_keys
967 @section Keys
968
969 @c man begin OPTIONS
970
971 During the graphical emulation, you can use the following keys:
972 @table @key
973 @item Ctrl-Alt-f
974 Toggle full screen
975
976 @item Ctrl-Alt-n
977 Switch to virtual console 'n'. Standard console mappings are:
978 @table @emph
979 @item 1
980 Target system display
981 @item 2
982 Monitor
983 @item 3
984 Serial port
985 @end table
986
987 @item Ctrl-Alt
988 Toggle mouse and keyboard grab.
989 @end table
990
991 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
992 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
993
994 During emulation, if you are using the @option{-nographic} option, use
995 @key{Ctrl-a h} to get terminal commands:
996
997 @table @key
998 @item Ctrl-a h
999 Print this help
1000 @item Ctrl-a x
1001 Exit emulator
1002 @item Ctrl-a s
1003 Save disk data back to file (if -snapshot)
1004 @item Ctrl-a t
1005 toggle console timestamps
1006 @item Ctrl-a b
1007 Send break (magic sysrq in Linux)
1008 @item Ctrl-a c
1009 Switch between console and monitor
1010 @item Ctrl-a Ctrl-a
1011 Send Ctrl-a
1012 @end table
1013 @c man end
1014
1015 @ignore
1016
1017 @c man begin SEEALSO
1018 The HTML documentation of QEMU for more precise information and Linux
1019 user mode emulator invocation.
1020 @c man end
1021
1022 @c man begin AUTHOR
1023 Fabrice Bellard
1024 @c man end
1025
1026 @end ignore
1027
1028 @node pcsys_monitor
1029 @section QEMU Monitor
1030
1031 The QEMU monitor is used to give complex commands to the QEMU
1032 emulator. You can use it to:
1033
1034 @itemize @minus
1035
1036 @item
1037 Remove or insert removable media images
1038 (such as CD-ROM or floppies).
1039
1040 @item
1041 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1042 from a disk file.
1043
1044 @item Inspect the VM state without an external debugger.
1045
1046 @end itemize
1047
1048 @subsection Commands
1049
1050 The following commands are available:
1051
1052 @table @option
1053
1054 @item help or ? [@var{cmd}]
1055 Show the help for all commands or just for command @var{cmd}.
1056
1057 @item commit
1058 Commit changes to the disk images (if -snapshot is used).
1059
1060 @item info @var{subcommand}
1061 Show various information about the system state.
1062
1063 @table @option
1064 @item info network
1065 show the various VLANs and the associated devices
1066 @item info block
1067 show the block devices
1068 @item info registers
1069 show the cpu registers
1070 @item info history
1071 show the command line history
1072 @item info pci
1073 show emulated PCI device
1074 @item info usb
1075 show USB devices plugged on the virtual USB hub
1076 @item info usbhost
1077 show all USB host devices
1078 @item info capture
1079 show information about active capturing
1080 @item info snapshots
1081 show list of VM snapshots
1082 @item info mice
1083 show which guest mouse is receiving events
1084 @end table
1085
1086 @item q or quit
1087 Quit the emulator.
1088
1089 @item eject [-f] @var{device}
1090 Eject a removable medium (use -f to force it).
1091
1092 @item change @var{device} @var{setting}
1093
1094 Change the configuration of a device.
1095
1096 @table @option
1097 @item change @var{diskdevice} @var{filename}
1098 Change the medium for a removable disk device to point to @var{filename}. eg
1099
1100 @example
1101 (qemu) change ide1-cd0 /path/to/some.iso
1102 @end example
1103
1104 @item change vnc @var{display},@var{options}
1105 Change the configuration of the VNC server. The valid syntax for @var{display}
1106 and @var{options} are described at @ref{sec_invocation}. eg
1107
1108 @example
1109 (qemu) change vnc localhost:1
1110 @end example
1111
1112 @item change vnc password
1113
1114 Change the password associated with the VNC server. The monitor will prompt for
1115 the new password to be entered. VNC passwords are only significant upto 8 letters.
1116 eg.
1117
1118 @example
1119 (qemu) change vnc password
1120 Password: ********
1121 @end example
1122
1123 @end table
1124
1125 @item screendump @var{filename}
1126 Save screen into PPM image @var{filename}.
1127
1128 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1129 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1130 with optional scroll axis @var{dz}.
1131
1132 @item mouse_button @var{val}
1133 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1134
1135 @item mouse_set @var{index}
1136 Set which mouse device receives events at given @var{index}, index
1137 can be obtained with
1138 @example
1139 info mice
1140 @end example
1141
1142 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1143 Capture audio into @var{filename}. Using sample rate @var{frequency}
1144 bits per sample @var{bits} and number of channels @var{channels}.
1145
1146 Defaults:
1147 @itemize @minus
1148 @item Sample rate = 44100 Hz - CD quality
1149 @item Bits = 16
1150 @item Number of channels = 2 - Stereo
1151 @end itemize
1152
1153 @item stopcapture @var{index}
1154 Stop capture with a given @var{index}, index can be obtained with
1155 @example
1156 info capture
1157 @end example
1158
1159 @item log @var{item1}[,...]
1160 Activate logging of the specified items to @file{/tmp/qemu.log}.
1161
1162 @item savevm [@var{tag}|@var{id}]
1163 Create a snapshot of the whole virtual machine. If @var{tag} is
1164 provided, it is used as human readable identifier. If there is already
1165 a snapshot with the same tag or ID, it is replaced. More info at
1166 @ref{vm_snapshots}.
1167
1168 @item loadvm @var{tag}|@var{id}
1169 Set the whole virtual machine to the snapshot identified by the tag
1170 @var{tag} or the unique snapshot ID @var{id}.
1171
1172 @item delvm @var{tag}|@var{id}
1173 Delete the snapshot identified by @var{tag} or @var{id}.
1174
1175 @item stop
1176 Stop emulation.
1177
1178 @item c or cont
1179 Resume emulation.
1180
1181 @item gdbserver [@var{port}]
1182 Start gdbserver session (default @var{port}=1234)
1183
1184 @item x/fmt @var{addr}
1185 Virtual memory dump starting at @var{addr}.
1186
1187 @item xp /@var{fmt} @var{addr}
1188 Physical memory dump starting at @var{addr}.
1189
1190 @var{fmt} is a format which tells the command how to format the
1191 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1192
1193 @table @var
1194 @item count
1195 is the number of items to be dumped.
1196
1197 @item format
1198 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1199 c (char) or i (asm instruction).
1200
1201 @item size
1202 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1203 @code{h} or @code{w} can be specified with the @code{i} format to
1204 respectively select 16 or 32 bit code instruction size.
1205
1206 @end table
1207
1208 Examples:
1209 @itemize
1210 @item
1211 Dump 10 instructions at the current instruction pointer:
1212 @example
1213 (qemu) x/10i $eip
1214 0x90107063:  ret
1215 0x90107064:  sti
1216 0x90107065:  lea    0x0(%esi,1),%esi
1217 0x90107069:  lea    0x0(%edi,1),%edi
1218 0x90107070:  ret
1219 0x90107071:  jmp    0x90107080
1220 0x90107073:  nop
1221 0x90107074:  nop
1222 0x90107075:  nop
1223 0x90107076:  nop
1224 @end example
1225
1226 @item
1227 Dump 80 16 bit values at the start of the video memory.
1228 @smallexample
1229 (qemu) xp/80hx 0xb8000
1230 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1231 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1232 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1233 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1234 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1235 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1236 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1237 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1238 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1239 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1240 @end smallexample
1241 @end itemize
1242
1243 @item p or print/@var{fmt} @var{expr}
1244
1245 Print expression value. Only the @var{format} part of @var{fmt} is
1246 used.
1247
1248 @item sendkey @var{keys}
1249
1250 Send @var{keys} to the emulator. Use @code{-} to press several keys
1251 simultaneously. Example:
1252 @example
1253 sendkey ctrl-alt-f1
1254 @end example
1255
1256 This command is useful to send keys that your graphical user interface
1257 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1258
1259 @item system_reset
1260
1261 Reset the system.
1262
1263 @item boot_set @var{bootdevicelist}
1264
1265 Define new values for the boot device list. Those values will override
1266 the values specified on the command line through the @code{-boot} option.
1267
1268 The values that can be specified here depend on the machine type, but are
1269 the same that can be specified in the @code{-boot} command line option.
1270
1271 @item usb_add @var{devname}
1272
1273 Add the USB device @var{devname}.  For details of available devices see
1274 @ref{usb_devices}
1275
1276 @item usb_del @var{devname}
1277
1278 Remove the USB device @var{devname} from the QEMU virtual USB
1279 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1280 command @code{info usb} to see the devices you can remove.
1281
1282 @end table
1283
1284 @subsection Integer expressions
1285
1286 The monitor understands integers expressions for every integer
1287 argument. You can use register names to get the value of specifics
1288 CPU registers by prefixing them with @emph{$}.
1289
1290 @node disk_images
1291 @section Disk Images
1292
1293 Since version 0.6.1, QEMU supports many disk image formats, including
1294 growable disk images (their size increase as non empty sectors are
1295 written), compressed and encrypted disk images. Version 0.8.3 added
1296 the new qcow2 disk image format which is essential to support VM
1297 snapshots.
1298
1299 @menu
1300 * disk_images_quickstart::    Quick start for disk image creation
1301 * disk_images_snapshot_mode:: Snapshot mode
1302 * vm_snapshots::              VM snapshots
1303 * qemu_img_invocation::       qemu-img Invocation
1304 * host_drives::               Using host drives
1305 * disk_images_fat_images::    Virtual FAT disk images
1306 @end menu
1307
1308 @node disk_images_quickstart
1309 @subsection Quick start for disk image creation
1310
1311 You can create a disk image with the command:
1312 @example
1313 qemu-img create myimage.img mysize
1314 @end example
1315 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1316 size in kilobytes. You can add an @code{M} suffix to give the size in
1317 megabytes and a @code{G} suffix for gigabytes.
1318
1319 See @ref{qemu_img_invocation} for more information.
1320
1321 @node disk_images_snapshot_mode
1322 @subsection Snapshot mode
1323
1324 If you use the option @option{-snapshot}, all disk images are
1325 considered as read only. When sectors in written, they are written in
1326 a temporary file created in @file{/tmp}. You can however force the
1327 write back to the raw disk images by using the @code{commit} monitor
1328 command (or @key{C-a s} in the serial console).
1329
1330 @node vm_snapshots
1331 @subsection VM snapshots
1332
1333 VM snapshots are snapshots of the complete virtual machine including
1334 CPU state, RAM, device state and the content of all the writable
1335 disks. In order to use VM snapshots, you must have at least one non
1336 removable and writable block device using the @code{qcow2} disk image
1337 format. Normally this device is the first virtual hard drive.
1338
1339 Use the monitor command @code{savevm} to create a new VM snapshot or
1340 replace an existing one. A human readable name can be assigned to each
1341 snapshot in addition to its numerical ID.
1342
1343 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1344 a VM snapshot. @code{info snapshots} lists the available snapshots
1345 with their associated information:
1346
1347 @example
1348 (qemu) info snapshots
1349 Snapshot devices: hda
1350 Snapshot list (from hda):
1351 ID        TAG                 VM SIZE                DATE       VM CLOCK
1352 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1353 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1354 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1355 @end example
1356
1357 A VM snapshot is made of a VM state info (its size is shown in
1358 @code{info snapshots}) and a snapshot of every writable disk image.
1359 The VM state info is stored in the first @code{qcow2} non removable
1360 and writable block device. The disk image snapshots are stored in
1361 every disk image. The size of a snapshot in a disk image is difficult
1362 to evaluate and is not shown by @code{info snapshots} because the
1363 associated disk sectors are shared among all the snapshots to save
1364 disk space (otherwise each snapshot would need a full copy of all the
1365 disk images).
1366
1367 When using the (unrelated) @code{-snapshot} option
1368 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1369 but they are deleted as soon as you exit QEMU.
1370
1371 VM snapshots currently have the following known limitations:
1372 @itemize
1373 @item
1374 They cannot cope with removable devices if they are removed or
1375 inserted after a snapshot is done.
1376 @item
1377 A few device drivers still have incomplete snapshot support so their
1378 state is not saved or restored properly (in particular USB).
1379 @end itemize
1380
1381 @node qemu_img_invocation
1382 @subsection @code{qemu-img} Invocation
1383
1384 @include qemu-img.texi
1385
1386 @node host_drives
1387 @subsection Using host drives
1388
1389 In addition to disk image files, QEMU can directly access host
1390 devices. We describe here the usage for QEMU version >= 0.8.3.
1391
1392 @subsubsection Linux
1393
1394 On Linux, you can directly use the host device filename instead of a
1395 disk image filename provided you have enough privileges to access
1396 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1397 @file{/dev/fd0} for the floppy.
1398
1399 @table @code
1400 @item CD
1401 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1402 specific code to detect CDROM insertion or removal. CDROM ejection by
1403 the guest OS is supported. Currently only data CDs are supported.
1404 @item Floppy
1405 You can specify a floppy device even if no floppy is loaded. Floppy
1406 removal is currently not detected accurately (if you change floppy
1407 without doing floppy access while the floppy is not loaded, the guest
1408 OS will think that the same floppy is loaded).
1409 @item Hard disks
1410 Hard disks can be used. Normally you must specify the whole disk
1411 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1412 see it as a partitioned disk. WARNING: unless you know what you do, it
1413 is better to only make READ-ONLY accesses to the hard disk otherwise
1414 you may corrupt your host data (use the @option{-snapshot} command
1415 line option or modify the device permissions accordingly).
1416 @end table
1417
1418 @subsubsection Windows
1419
1420 @table @code
1421 @item CD
1422 The preferred syntax is the drive letter (e.g. @file{d:}). The
1423 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1424 supported as an alias to the first CDROM drive.
1425
1426 Currently there is no specific code to handle removable media, so it
1427 is better to use the @code{change} or @code{eject} monitor commands to
1428 change or eject media.
1429 @item Hard disks
1430 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1431 where @var{N} is the drive number (0 is the first hard disk).
1432
1433 WARNING: unless you know what you do, it is better to only make
1434 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1435 host data (use the @option{-snapshot} command line so that the
1436 modifications are written in a temporary file).
1437 @end table
1438
1439
1440 @subsubsection Mac OS X
1441
1442 @file{/dev/cdrom} is an alias to the first CDROM.
1443
1444 Currently there is no specific code to handle removable media, so it
1445 is better to use the @code{change} or @code{eject} monitor commands to
1446 change or eject media.
1447
1448 @node disk_images_fat_images
1449 @subsection Virtual FAT disk images
1450
1451 QEMU can automatically create a virtual FAT disk image from a
1452 directory tree. In order to use it, just type:
1453
1454 @example
1455 qemu linux.img -hdb fat:/my_directory
1456 @end example
1457
1458 Then you access access to all the files in the @file{/my_directory}
1459 directory without having to copy them in a disk image or to export
1460 them via SAMBA or NFS. The default access is @emph{read-only}.
1461
1462 Floppies can be emulated with the @code{:floppy:} option:
1463
1464 @example
1465 qemu linux.img -fda fat:floppy:/my_directory
1466 @end example
1467
1468 A read/write support is available for testing (beta stage) with the
1469 @code{:rw:} option:
1470
1471 @example
1472 qemu linux.img -fda fat:floppy:rw:/my_directory
1473 @end example
1474
1475 What you should @emph{never} do:
1476 @itemize
1477 @item use non-ASCII filenames ;
1478 @item use "-snapshot" together with ":rw:" ;
1479 @item expect it to work when loadvm'ing ;
1480 @item write to the FAT directory on the host system while accessing it with the guest system.
1481 @end itemize
1482
1483 @node pcsys_network
1484 @section Network emulation
1485
1486 QEMU can simulate several network cards (PCI or ISA cards on the PC
1487 target) and can connect them to an arbitrary number of Virtual Local
1488 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1489 VLAN. VLAN can be connected between separate instances of QEMU to
1490 simulate large networks. For simpler usage, a non privileged user mode
1491 network stack can replace the TAP device to have a basic network
1492 connection.
1493
1494 @subsection VLANs
1495
1496 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1497 connection between several network devices. These devices can be for
1498 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1499 (TAP devices).
1500
1501 @subsection Using TAP network interfaces
1502
1503 This is the standard way to connect QEMU to a real network. QEMU adds
1504 a virtual network device on your host (called @code{tapN}), and you
1505 can then configure it as if it was a real ethernet card.
1506
1507 @subsubsection Linux host
1508
1509 As an example, you can download the @file{linux-test-xxx.tar.gz}
1510 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1511 configure properly @code{sudo} so that the command @code{ifconfig}
1512 contained in @file{qemu-ifup} can be executed as root. You must verify
1513 that your host kernel supports the TAP network interfaces: the
1514 device @file{/dev/net/tun} must be present.
1515
1516 See @ref{sec_invocation} to have examples of command lines using the
1517 TAP network interfaces.
1518
1519 @subsubsection Windows host
1520
1521 There is a virtual ethernet driver for Windows 2000/XP systems, called
1522 TAP-Win32. But it is not included in standard QEMU for Windows,
1523 so you will need to get it separately. It is part of OpenVPN package,
1524 so download OpenVPN from : @url{http://openvpn.net/}.
1525
1526 @subsection Using the user mode network stack
1527
1528 By using the option @option{-net user} (default configuration if no
1529 @option{-net} option is specified), QEMU uses a completely user mode
1530 network stack (you don't need root privilege to use the virtual
1531 network). The virtual network configuration is the following:
1532
1533 @example
1534
1535          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1536                            |          (10.0.2.2)
1537                            |
1538                            ---->  DNS server (10.0.2.3)
1539                            |
1540                            ---->  SMB server (10.0.2.4)
1541 @end example
1542
1543 The QEMU VM behaves as if it was behind a firewall which blocks all
1544 incoming connections. You can use a DHCP client to automatically
1545 configure the network in the QEMU VM. The DHCP server assign addresses
1546 to the hosts starting from 10.0.2.15.
1547
1548 In order to check that the user mode network is working, you can ping
1549 the address 10.0.2.2 and verify that you got an address in the range
1550 10.0.2.x from the QEMU virtual DHCP server.
1551
1552 Note that @code{ping} is not supported reliably to the internet as it
1553 would require root privileges. It means you can only ping the local
1554 router (10.0.2.2).
1555
1556 When using the built-in TFTP server, the router is also the TFTP
1557 server.
1558
1559 When using the @option{-redir} option, TCP or UDP connections can be
1560 redirected from the host to the guest. It allows for example to
1561 redirect X11, telnet or SSH connections.
1562
1563 @subsection Connecting VLANs between QEMU instances
1564
1565 Using the @option{-net socket} option, it is possible to make VLANs
1566 that span several QEMU instances. See @ref{sec_invocation} to have a
1567 basic example.
1568
1569 @node direct_linux_boot
1570 @section Direct Linux Boot
1571
1572 This section explains how to launch a Linux kernel inside QEMU without
1573 having to make a full bootable image. It is very useful for fast Linux
1574 kernel testing.
1575
1576 The syntax is:
1577 @example
1578 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1579 @end example
1580
1581 Use @option{-kernel} to provide the Linux kernel image and
1582 @option{-append} to give the kernel command line arguments. The
1583 @option{-initrd} option can be used to provide an INITRD image.
1584
1585 When using the direct Linux boot, a disk image for the first hard disk
1586 @file{hda} is required because its boot sector is used to launch the
1587 Linux kernel.
1588
1589 If you do not need graphical output, you can disable it and redirect
1590 the virtual serial port and the QEMU monitor to the console with the
1591 @option{-nographic} option. The typical command line is:
1592 @example
1593 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1594      -append "root=/dev/hda console=ttyS0" -nographic
1595 @end example
1596
1597 Use @key{Ctrl-a c} to switch between the serial console and the
1598 monitor (@pxref{pcsys_keys}).
1599
1600 @node pcsys_usb
1601 @section USB emulation
1602
1603 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1604 virtual USB devices or real host USB devices (experimental, works only
1605 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1606 as necessary to connect multiple USB devices.
1607
1608 @menu
1609 * usb_devices::
1610 * host_usb_devices::
1611 @end menu
1612 @node usb_devices
1613 @subsection Connecting USB devices
1614
1615 USB devices can be connected with the @option{-usbdevice} commandline option
1616 or the @code{usb_add} monitor command.  Available devices are:
1617
1618 @table @code
1619 @item mouse
1620 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1621 @item tablet
1622 Pointer device that uses absolute coordinates (like a touchscreen).
1623 This means qemu is able to report the mouse position without having
1624 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1625 @item disk:@var{file}
1626 Mass storage device based on @var{file} (@pxref{disk_images})
1627 @item host:@var{bus.addr}
1628 Pass through the host device identified by @var{bus.addr}
1629 (Linux only)
1630 @item host:@var{vendor_id:product_id}
1631 Pass through the host device identified by @var{vendor_id:product_id}
1632 (Linux only)
1633 @item wacom-tablet
1634 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1635 above but it can be used with the tslib library because in addition to touch
1636 coordinates it reports touch pressure.
1637 @item keyboard
1638 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1639 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1640 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1641 device @var{dev}. The available character devices are the same as for the
1642 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1643 used to override the default 0403:6001. For instance, 
1644 @example
1645 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1646 @end example
1647 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1648 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1649 @item braille
1650 Braille device.  This will use BrlAPI to display the braille output on a real
1651 or fake device.
1652 @end table
1653
1654 @node host_usb_devices
1655 @subsection Using host USB devices on a Linux host
1656
1657 WARNING: this is an experimental feature. QEMU will slow down when
1658 using it. USB devices requiring real time streaming (i.e. USB Video
1659 Cameras) are not supported yet.
1660
1661 @enumerate
1662 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1663 is actually using the USB device. A simple way to do that is simply to
1664 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1665 to @file{mydriver.o.disabled}.
1666
1667 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1668 @example
1669 ls /proc/bus/usb
1670 001  devices  drivers
1671 @end example
1672
1673 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1674 @example
1675 chown -R myuid /proc/bus/usb
1676 @end example
1677
1678 @item Launch QEMU and do in the monitor:
1679 @example
1680 info usbhost
1681   Device 1.2, speed 480 Mb/s
1682     Class 00: USB device 1234:5678, USB DISK
1683 @end example
1684 You should see the list of the devices you can use (Never try to use
1685 hubs, it won't work).
1686
1687 @item Add the device in QEMU by using:
1688 @example
1689 usb_add host:1234:5678
1690 @end example
1691
1692 Normally the guest OS should report that a new USB device is
1693 plugged. You can use the option @option{-usbdevice} to do the same.
1694
1695 @item Now you can try to use the host USB device in QEMU.
1696
1697 @end enumerate
1698
1699 When relaunching QEMU, you may have to unplug and plug again the USB
1700 device to make it work again (this is a bug).
1701
1702 @node vnc_security
1703 @section VNC security
1704
1705 The VNC server capability provides access to the graphical console
1706 of the guest VM across the network. This has a number of security
1707 considerations depending on the deployment scenarios.
1708
1709 @menu
1710 * vnc_sec_none::
1711 * vnc_sec_password::
1712 * vnc_sec_certificate::
1713 * vnc_sec_certificate_verify::
1714 * vnc_sec_certificate_pw::
1715 * vnc_generate_cert::
1716 @end menu
1717 @node vnc_sec_none
1718 @subsection Without passwords
1719
1720 The simplest VNC server setup does not include any form of authentication.
1721 For this setup it is recommended to restrict it to listen on a UNIX domain
1722 socket only. For example
1723
1724 @example
1725 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1726 @end example
1727
1728 This ensures that only users on local box with read/write access to that
1729 path can access the VNC server. To securely access the VNC server from a
1730 remote machine, a combination of netcat+ssh can be used to provide a secure
1731 tunnel.
1732
1733 @node vnc_sec_password
1734 @subsection With passwords
1735
1736 The VNC protocol has limited support for password based authentication. Since
1737 the protocol limits passwords to 8 characters it should not be considered
1738 to provide high security. The password can be fairly easily brute-forced by
1739 a client making repeat connections. For this reason, a VNC server using password
1740 authentication should be restricted to only listen on the loopback interface
1741 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1742 option, and then once QEMU is running the password is set with the monitor. Until
1743 the monitor is used to set the password all clients will be rejected.
1744
1745 @example
1746 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1747 (qemu) change vnc password
1748 Password: ********
1749 (qemu)
1750 @end example
1751
1752 @node vnc_sec_certificate
1753 @subsection With x509 certificates
1754
1755 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1756 TLS for encryption of the session, and x509 certificates for authentication.
1757 The use of x509 certificates is strongly recommended, because TLS on its
1758 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1759 support provides a secure session, but no authentication. This allows any
1760 client to connect, and provides an encrypted session.
1761
1762 @example
1763 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1764 @end example
1765
1766 In the above example @code{/etc/pki/qemu} should contain at least three files,
1767 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1768 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1769 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1770 only be readable by the user owning it.
1771
1772 @node vnc_sec_certificate_verify
1773 @subsection With x509 certificates and client verification
1774
1775 Certificates can also provide a means to authenticate the client connecting.
1776 The server will request that the client provide a certificate, which it will
1777 then validate against the CA certificate. This is a good choice if deploying
1778 in an environment with a private internal certificate authority.
1779
1780 @example
1781 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1782 @end example
1783
1784
1785 @node vnc_sec_certificate_pw
1786 @subsection With x509 certificates, client verification and passwords
1787
1788 Finally, the previous method can be combined with VNC password authentication
1789 to provide two layers of authentication for clients.
1790
1791 @example
1792 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1793 (qemu) change vnc password
1794 Password: ********
1795 (qemu)
1796 @end example
1797
1798 @node vnc_generate_cert
1799 @subsection Generating certificates for VNC
1800
1801 The GNU TLS packages provides a command called @code{certtool} which can
1802 be used to generate certificates and keys in PEM format. At a minimum it
1803 is neccessary to setup a certificate authority, and issue certificates to
1804 each server. If using certificates for authentication, then each client
1805 will also need to be issued a certificate. The recommendation is for the
1806 server to keep its certificates in either @code{/etc/pki/qemu} or for
1807 unprivileged users in @code{$HOME/.pki/qemu}.
1808
1809 @menu
1810 * vnc_generate_ca::
1811 * vnc_generate_server::
1812 * vnc_generate_client::
1813 @end menu
1814 @node vnc_generate_ca
1815 @subsubsection Setup the Certificate Authority
1816
1817 This step only needs to be performed once per organization / organizational
1818 unit. First the CA needs a private key. This key must be kept VERY secret
1819 and secure. If this key is compromised the entire trust chain of the certificates
1820 issued with it is lost.
1821
1822 @example
1823 # certtool --generate-privkey > ca-key.pem
1824 @end example
1825
1826 A CA needs to have a public certificate. For simplicity it can be a self-signed
1827 certificate, or one issue by a commercial certificate issuing authority. To
1828 generate a self-signed certificate requires one core piece of information, the
1829 name of the organization.
1830
1831 @example
1832 # cat > ca.info <<EOF
1833 cn = Name of your organization
1834 ca
1835 cert_signing_key
1836 EOF
1837 # certtool --generate-self-signed \
1838            --load-privkey ca-key.pem
1839            --template ca.info \
1840            --outfile ca-cert.pem
1841 @end example
1842
1843 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1844 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1845
1846 @node vnc_generate_server
1847 @subsubsection Issuing server certificates
1848
1849 Each server (or host) needs to be issued with a key and certificate. When connecting
1850 the certificate is sent to the client which validates it against the CA certificate.
1851 The core piece of information for a server certificate is the hostname. This should
1852 be the fully qualified hostname that the client will connect with, since the client
1853 will typically also verify the hostname in the certificate. On the host holding the
1854 secure CA private key:
1855
1856 @example
1857 # cat > server.info <<EOF
1858 organization = Name  of your organization
1859 cn = server.foo.example.com
1860 tls_www_server
1861 encryption_key
1862 signing_key
1863 EOF
1864 # certtool --generate-privkey > server-key.pem
1865 # certtool --generate-certificate \
1866            --load-ca-certificate ca-cert.pem \
1867            --load-ca-privkey ca-key.pem \
1868            --load-privkey server server-key.pem \
1869            --template server.info \
1870            --outfile server-cert.pem
1871 @end example
1872
1873 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1874 to the server for which they were generated. The @code{server-key.pem} is security
1875 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1876
1877 @node vnc_generate_client
1878 @subsubsection Issuing client certificates
1879
1880 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1881 certificates as its authentication mechanism, each client also needs to be issued
1882 a certificate. The client certificate contains enough metadata to uniquely identify
1883 the client, typically organization, state, city, building, etc. On the host holding
1884 the secure CA private key:
1885
1886 @example
1887 # cat > client.info <<EOF
1888 country = GB
1889 state = London
1890 locality = London
1891 organiazation = Name of your organization
1892 cn = client.foo.example.com
1893 tls_www_client
1894 encryption_key
1895 signing_key
1896 EOF
1897 # certtool --generate-privkey > client-key.pem
1898 # certtool --generate-certificate \
1899            --load-ca-certificate ca-cert.pem \
1900            --load-ca-privkey ca-key.pem \
1901            --load-privkey client-key.pem \
1902            --template client.info \
1903            --outfile client-cert.pem
1904 @end example
1905
1906 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1907 copied to the client for which they were generated.
1908
1909 @node gdb_usage
1910 @section GDB usage
1911
1912 QEMU has a primitive support to work with gdb, so that you can do
1913 'Ctrl-C' while the virtual machine is running and inspect its state.
1914
1915 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1916 gdb connection:
1917 @example
1918 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1919        -append "root=/dev/hda"
1920 Connected to host network interface: tun0
1921 Waiting gdb connection on port 1234
1922 @end example
1923
1924 Then launch gdb on the 'vmlinux' executable:
1925 @example
1926 > gdb vmlinux
1927 @end example
1928
1929 In gdb, connect to QEMU:
1930 @example
1931 (gdb) target remote localhost:1234
1932 @end example
1933
1934 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1935 @example
1936 (gdb) c
1937 @end example
1938
1939 Here are some useful tips in order to use gdb on system code:
1940
1941 @enumerate
1942 @item
1943 Use @code{info reg} to display all the CPU registers.
1944 @item
1945 Use @code{x/10i $eip} to display the code at the PC position.
1946 @item
1947 Use @code{set architecture i8086} to dump 16 bit code. Then use
1948 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1949 @end enumerate
1950
1951 Advanced debugging options:
1952
1953 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1954 @table @code
1955 @item maintenance packet qqemu.sstepbits
1956
1957 This will display the MASK bits used to control the single stepping IE:
1958 @example
1959 (gdb) maintenance packet qqemu.sstepbits
1960 sending: "qqemu.sstepbits"
1961 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1962 @end example
1963 @item maintenance packet qqemu.sstep
1964
1965 This will display the current value of the mask used when single stepping IE:
1966 @example
1967 (gdb) maintenance packet qqemu.sstep
1968 sending: "qqemu.sstep"
1969 received: "0x7"
1970 @end example
1971 @item maintenance packet Qqemu.sstep=HEX_VALUE
1972
1973 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1974 @example
1975 (gdb) maintenance packet Qqemu.sstep=0x5
1976 sending: "qemu.sstep=0x5"
1977 received: "OK"
1978 @end example
1979 @end table
1980
1981 @node pcsys_os_specific
1982 @section Target OS specific information
1983
1984 @subsection Linux
1985
1986 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1987 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1988 color depth in the guest and the host OS.
1989
1990 When using a 2.6 guest Linux kernel, you should add the option
1991 @code{clock=pit} on the kernel command line because the 2.6 Linux
1992 kernels make very strict real time clock checks by default that QEMU
1993 cannot simulate exactly.
1994
1995 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1996 not activated because QEMU is slower with this patch. The QEMU
1997 Accelerator Module is also much slower in this case. Earlier Fedora
1998 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1999 patch by default. Newer kernels don't have it.
2000
2001 @subsection Windows
2002
2003 If you have a slow host, using Windows 95 is better as it gives the
2004 best speed. Windows 2000 is also a good choice.
2005
2006 @subsubsection SVGA graphic modes support
2007
2008 QEMU emulates a Cirrus Logic GD5446 Video
2009 card. All Windows versions starting from Windows 95 should recognize
2010 and use this graphic card. For optimal performances, use 16 bit color
2011 depth in the guest and the host OS.
2012
2013 If you are using Windows XP as guest OS and if you want to use high
2014 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2015 1280x1024x16), then you should use the VESA VBE virtual graphic card
2016 (option @option{-std-vga}).
2017
2018 @subsubsection CPU usage reduction
2019
2020 Windows 9x does not correctly use the CPU HLT
2021 instruction. The result is that it takes host CPU cycles even when
2022 idle. You can install the utility from
2023 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2024 problem. Note that no such tool is needed for NT, 2000 or XP.
2025
2026 @subsubsection Windows 2000 disk full problem
2027
2028 Windows 2000 has a bug which gives a disk full problem during its
2029 installation. When installing it, use the @option{-win2k-hack} QEMU
2030 option to enable a specific workaround. After Windows 2000 is
2031 installed, you no longer need this option (this option slows down the
2032 IDE transfers).
2033
2034 @subsubsection Windows 2000 shutdown
2035
2036 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2037 can. It comes from the fact that Windows 2000 does not automatically
2038 use the APM driver provided by the BIOS.
2039
2040 In order to correct that, do the following (thanks to Struan
2041 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2042 Add/Troubleshoot a device => Add a new device & Next => No, select the
2043 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2044 (again) a few times. Now the driver is installed and Windows 2000 now
2045 correctly instructs QEMU to shutdown at the appropriate moment.
2046
2047 @subsubsection Share a directory between Unix and Windows
2048
2049 See @ref{sec_invocation} about the help of the option @option{-smb}.
2050
2051 @subsubsection Windows XP security problem
2052
2053 Some releases of Windows XP install correctly but give a security
2054 error when booting:
2055 @example
2056 A problem is preventing Windows from accurately checking the
2057 license for this computer. Error code: 0x800703e6.
2058 @end example
2059
2060 The workaround is to install a service pack for XP after a boot in safe
2061 mode. Then reboot, and the problem should go away. Since there is no
2062 network while in safe mode, its recommended to download the full
2063 installation of SP1 or SP2 and transfer that via an ISO or using the
2064 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2065
2066 @subsection MS-DOS and FreeDOS
2067
2068 @subsubsection CPU usage reduction
2069
2070 DOS does not correctly use the CPU HLT instruction. The result is that
2071 it takes host CPU cycles even when idle. You can install the utility
2072 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2073 problem.
2074
2075 @node QEMU System emulator for non PC targets
2076 @chapter QEMU System emulator for non PC targets
2077
2078 QEMU is a generic emulator and it emulates many non PC
2079 machines. Most of the options are similar to the PC emulator. The
2080 differences are mentioned in the following sections.
2081
2082 @menu
2083 * QEMU PowerPC System emulator::
2084 * Sparc32 System emulator::
2085 * Sparc64 System emulator::
2086 * MIPS System emulator::
2087 * ARM System emulator::
2088 * ColdFire System emulator::
2089 @end menu
2090
2091 @node QEMU PowerPC System emulator
2092 @section QEMU PowerPC System emulator
2093
2094 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2095 or PowerMac PowerPC system.
2096
2097 QEMU emulates the following PowerMac peripherals:
2098
2099 @itemize @minus
2100 @item
2101 UniNorth PCI Bridge
2102 @item
2103 PCI VGA compatible card with VESA Bochs Extensions
2104 @item
2105 2 PMAC IDE interfaces with hard disk and CD-ROM support
2106 @item
2107 NE2000 PCI adapters
2108 @item
2109 Non Volatile RAM
2110 @item
2111 VIA-CUDA with ADB keyboard and mouse.
2112 @end itemize
2113
2114 QEMU emulates the following PREP peripherals:
2115
2116 @itemize @minus
2117 @item
2118 PCI Bridge
2119 @item
2120 PCI VGA compatible card with VESA Bochs Extensions
2121 @item
2122 2 IDE interfaces with hard disk and CD-ROM support
2123 @item
2124 Floppy disk
2125 @item
2126 NE2000 network adapters
2127 @item
2128 Serial port
2129 @item
2130 PREP Non Volatile RAM
2131 @item
2132 PC compatible keyboard and mouse.
2133 @end itemize
2134
2135 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2136 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2137
2138 @c man begin OPTIONS
2139
2140 The following options are specific to the PowerPC emulation:
2141
2142 @table @option
2143
2144 @item -g WxH[xDEPTH]
2145
2146 Set the initial VGA graphic mode. The default is 800x600x15.
2147
2148 @end table
2149
2150 @c man end
2151
2152
2153 More information is available at
2154 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2155
2156 @node Sparc32 System emulator
2157 @section Sparc32 System emulator
2158
2159 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2160 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2161 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2162 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2163 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2164 of usable CPUs to 4.
2165
2166 QEMU emulates the following sun4m/sun4d peripherals:
2167
2168 @itemize @minus
2169 @item
2170 IOMMU or IO-UNITs
2171 @item
2172 TCX Frame buffer
2173 @item
2174 Lance (Am7990) Ethernet
2175 @item
2176 Non Volatile RAM M48T08
2177 @item
2178 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2179 and power/reset logic
2180 @item
2181 ESP SCSI controller with hard disk and CD-ROM support
2182 @item
2183 Floppy drive (not on SS-600MP)
2184 @item
2185 CS4231 sound device (only on SS-5, not working yet)
2186 @end itemize
2187
2188 The number of peripherals is fixed in the architecture.  Maximum
2189 memory size depends on the machine type, for SS-5 it is 256MB and for
2190 others 2047MB.
2191
2192 Since version 0.8.2, QEMU uses OpenBIOS
2193 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2194 firmware implementation. The goal is to implement a 100% IEEE
2195 1275-1994 (referred to as Open Firmware) compliant firmware.
2196
2197 A sample Linux 2.6 series kernel and ram disk image are available on
2198 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2199 Solaris kernels don't work.
2200
2201 @c man begin OPTIONS
2202
2203 The following options are specific to the Sparc32 emulation:
2204
2205 @table @option
2206
2207 @item -g WxHx[xDEPTH]
2208
2209 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2210 the only other possible mode is 1024x768x24.
2211
2212 @item -prom-env string
2213
2214 Set OpenBIOS variables in NVRAM, for example:
2215
2216 @example
2217 qemu-system-sparc -prom-env 'auto-boot?=false' \
2218  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2219 @end example
2220
2221 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2222
2223 Set the emulated machine type. Default is SS-5.
2224
2225 @end table
2226
2227 @c man end
2228
2229 @node Sparc64 System emulator
2230 @section Sparc64 System emulator
2231
2232 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2233 The emulator is not usable for anything yet.
2234
2235 QEMU emulates the following sun4u peripherals:
2236
2237 @itemize @minus
2238 @item
2239 UltraSparc IIi APB PCI Bridge
2240 @item
2241 PCI VGA compatible card with VESA Bochs Extensions
2242 @item
2243 Non Volatile RAM M48T59
2244 @item
2245 PC-compatible serial ports
2246 @end itemize
2247
2248 @node MIPS System emulator
2249 @section MIPS System emulator
2250
2251 Four executables cover simulation of 32 and 64-bit MIPS systems in
2252 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2253 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2254 Five different machine types are emulated:
2255
2256 @itemize @minus
2257 @item
2258 A generic ISA PC-like machine "mips"
2259 @item
2260 The MIPS Malta prototype board "malta"
2261 @item
2262 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2263 @item
2264 MIPS emulator pseudo board "mipssim"
2265 @item
2266 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2267 @end itemize
2268
2269 The generic emulation is supported by Debian 'Etch' and is able to
2270 install Debian into a virtual disk image. The following devices are
2271 emulated:
2272
2273 @itemize @minus
2274 @item
2275 A range of MIPS CPUs, default is the 24Kf
2276 @item
2277 PC style serial port
2278 @item
2279 PC style IDE disk
2280 @item
2281 NE2000 network card
2282 @end itemize
2283
2284 The Malta emulation supports the following devices:
2285
2286 @itemize @minus
2287 @item
2288 Core board with MIPS 24Kf CPU and Galileo system controller
2289 @item
2290 PIIX4 PCI/USB/SMbus controller
2291 @item
2292 The Multi-I/O chip's serial device
2293 @item
2294 PCnet32 PCI network card
2295 @item
2296 Malta FPGA serial device
2297 @item
2298 Cirrus VGA graphics card
2299 @end itemize
2300
2301 The ACER Pica emulation supports:
2302
2303 @itemize @minus
2304 @item
2305 MIPS R4000 CPU
2306 @item
2307 PC-style IRQ and DMA controllers
2308 @item
2309 PC Keyboard
2310 @item
2311 IDE controller
2312 @end itemize
2313
2314 The mipssim pseudo board emulation provides an environment similiar
2315 to what the proprietary MIPS emulator uses for running Linux.
2316 It supports:
2317
2318 @itemize @minus
2319 @item
2320 A range of MIPS CPUs, default is the 24Kf
2321 @item
2322 PC style serial port
2323 @item
2324 MIPSnet network emulation
2325 @end itemize
2326
2327 The MIPS Magnum R4000 emulation supports:
2328
2329 @itemize @minus
2330 @item
2331 MIPS R4000 CPU
2332 @item
2333 PC-style IRQ controller
2334 @item
2335 PC Keyboard
2336 @item
2337 SCSI controller
2338 @item
2339 G364 framebuffer
2340 @end itemize
2341
2342
2343 @node ARM System emulator
2344 @section ARM System emulator
2345
2346 Use the executable @file{qemu-system-arm} to simulate a ARM
2347 machine. The ARM Integrator/CP board is emulated with the following
2348 devices:
2349
2350 @itemize @minus
2351 @item
2352 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2353 @item
2354 Two PL011 UARTs
2355 @item
2356 SMC 91c111 Ethernet adapter
2357 @item
2358 PL110 LCD controller
2359 @item
2360 PL050 KMI with PS/2 keyboard and mouse.
2361 @item
2362 PL181 MultiMedia Card Interface with SD card.
2363 @end itemize
2364
2365 The ARM Versatile baseboard is emulated with the following devices:
2366
2367 @itemize @minus
2368 @item
2369 ARM926E, ARM1136 or Cortex-A8 CPU
2370 @item
2371 PL190 Vectored Interrupt Controller
2372 @item
2373 Four PL011 UARTs
2374 @item
2375 SMC 91c111 Ethernet adapter
2376 @item
2377 PL110 LCD controller
2378 @item
2379 PL050 KMI with PS/2 keyboard and mouse.
2380 @item
2381 PCI host bridge.  Note the emulated PCI bridge only provides access to
2382 PCI memory space.  It does not provide access to PCI IO space.
2383 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2384 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2385 mapped control registers.
2386 @item
2387 PCI OHCI USB controller.
2388 @item
2389 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2390 @item
2391 PL181 MultiMedia Card Interface with SD card.
2392 @end itemize
2393
2394 The ARM RealView Emulation baseboard is emulated with the following devices:
2395
2396 @itemize @minus
2397 @item
2398 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2399 @item
2400 ARM AMBA Generic/Distributed Interrupt Controller
2401 @item
2402 Four PL011 UARTs
2403 @item
2404 SMC 91c111 Ethernet adapter
2405 @item
2406 PL110 LCD controller
2407 @item
2408 PL050 KMI with PS/2 keyboard and mouse
2409 @item
2410 PCI host bridge
2411 @item
2412 PCI OHCI USB controller
2413 @item
2414 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2415 @item
2416 PL181 MultiMedia Card Interface with SD card.
2417 @end itemize
2418
2419 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2420 and "Terrier") emulation includes the following peripherals:
2421
2422 @itemize @minus
2423 @item
2424 Intel PXA270 System-on-chip (ARM V5TE core)
2425 @item
2426 NAND Flash memory
2427 @item
2428 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2429 @item
2430 On-chip OHCI USB controller
2431 @item
2432 On-chip LCD controller
2433 @item
2434 On-chip Real Time Clock
2435 @item
2436 TI ADS7846 touchscreen controller on SSP bus
2437 @item
2438 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2439 @item
2440 GPIO-connected keyboard controller and LEDs
2441 @item
2442 Secure Digital card connected to PXA MMC/SD host
2443 @item
2444 Three on-chip UARTs
2445 @item
2446 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2447 @end itemize
2448
2449 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2450 following elements:
2451
2452 @itemize @minus
2453 @item
2454 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2455 @item
2456 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2457 @item
2458 On-chip LCD controller
2459 @item
2460 On-chip Real Time Clock
2461 @item
2462 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2463 CODEC, connected through MicroWire and I@math{^2}S busses
2464 @item
2465 GPIO-connected matrix keypad
2466 @item
2467 Secure Digital card connected to OMAP MMC/SD host
2468 @item
2469 Three on-chip UARTs
2470 @end itemize
2471
2472 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2473 devices:
2474
2475 @itemize @minus
2476 @item
2477 Cortex-M3 CPU core.
2478 @item
2479 64k Flash and 8k SRAM.
2480 @item
2481 Timers, UARTs, ADC and I@math{^2}C interface.
2482 @item
2483 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2484 @end itemize
2485
2486 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2487 devices:
2488
2489 @itemize @minus
2490 @item
2491 Cortex-M3 CPU core.
2492 @item
2493 256k Flash and 64k SRAM.
2494 @item
2495 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2496 @item
2497 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2498 @end itemize
2499
2500 The Freecom MusicPal internet radio emulation includes the following
2501 elements:
2502
2503 @itemize @minus
2504 @item
2505 Marvell MV88W8618 ARM core.
2506 @item
2507 32 MB RAM, 256 KB SRAM, 8 MB flash.
2508 @item
2509 Up to 2 16550 UARTs
2510 @item
2511 MV88W8xx8 Ethernet controller
2512 @item
2513 MV88W8618 audio controller, WM8750 CODEC and mixer
2514 @item
2515 128×64 display with brightness control
2516 @item
2517 2 buttons, 2 navigation wheels with button function
2518 @end itemize
2519
2520 A Linux 2.6 test image is available on the QEMU web site. More
2521 information is available in the QEMU mailing-list archive.
2522
2523 @node ColdFire System emulator
2524 @section ColdFire System emulator
2525
2526 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2527 The emulator is able to boot a uClinux kernel.
2528
2529 The M5208EVB emulation includes the following devices:
2530
2531 @itemize @minus
2532 @item
2533 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2534 @item
2535 Three Two on-chip UARTs.
2536 @item
2537 Fast Ethernet Controller (FEC)
2538 @end itemize
2539
2540 The AN5206 emulation includes the following devices:
2541
2542 @itemize @minus
2543 @item
2544 MCF5206 ColdFire V2 Microprocessor.
2545 @item
2546 Two on-chip UARTs.
2547 @end itemize
2548
2549 @node QEMU User space emulator
2550 @chapter QEMU User space emulator
2551
2552 @menu
2553 * Supported Operating Systems ::
2554 * Linux User space emulator::
2555 * Mac OS X/Darwin User space emulator ::
2556 @end menu
2557
2558 @node Supported Operating Systems
2559 @section Supported Operating Systems
2560
2561 The following OS are supported in user space emulation:
2562
2563 @itemize @minus
2564 @item
2565 Linux (referred as qemu-linux-user)
2566 @item
2567 Mac OS X/Darwin (referred as qemu-darwin-user)
2568 @end itemize
2569
2570 @node Linux User space emulator
2571 @section Linux User space emulator
2572
2573 @menu
2574 * Quick Start::
2575 * Wine launch::
2576 * Command line options::
2577 * Other binaries::
2578 @end menu
2579
2580 @node Quick Start
2581 @subsection Quick Start
2582
2583 In order to launch a Linux process, QEMU needs the process executable
2584 itself and all the target (x86) dynamic libraries used by it.
2585
2586 @itemize
2587
2588 @item On x86, you can just try to launch any process by using the native
2589 libraries:
2590
2591 @example
2592 qemu-i386 -L / /bin/ls
2593 @end example
2594
2595 @code{-L /} tells that the x86 dynamic linker must be searched with a
2596 @file{/} prefix.
2597
2598 @item Since QEMU is also a linux process, you can launch qemu with
2599 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2600
2601 @example
2602 qemu-i386 -L / qemu-i386 -L / /bin/ls
2603 @end example
2604
2605 @item On non x86 CPUs, you need first to download at least an x86 glibc
2606 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2607 @code{LD_LIBRARY_PATH} is not set:
2608
2609 @example
2610 unset LD_LIBRARY_PATH
2611 @end example
2612
2613 Then you can launch the precompiled @file{ls} x86 executable:
2614
2615 @example
2616 qemu-i386 tests/i386/ls
2617 @end example
2618 You can look at @file{qemu-binfmt-conf.sh} so that
2619 QEMU is automatically launched by the Linux kernel when you try to
2620 launch x86 executables. It requires the @code{binfmt_misc} module in the
2621 Linux kernel.
2622
2623 @item The x86 version of QEMU is also included. You can try weird things such as:
2624 @example
2625 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2626           /usr/local/qemu-i386/bin/ls-i386
2627 @end example
2628
2629 @end itemize
2630
2631 @node Wine launch
2632 @subsection Wine launch
2633
2634 @itemize
2635
2636 @item Ensure that you have a working QEMU with the x86 glibc
2637 distribution (see previous section). In order to verify it, you must be
2638 able to do:
2639
2640 @example
2641 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2642 @end example
2643
2644 @item Download the binary x86 Wine install
2645 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2646
2647 @item Configure Wine on your account. Look at the provided script
2648 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2649 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2650
2651 @item Then you can try the example @file{putty.exe}:
2652
2653 @example
2654 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2655           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2656 @end example
2657
2658 @end itemize
2659
2660 @node Command line options
2661 @subsection Command line options
2662
2663 @example
2664 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2665 @end example
2666
2667 @table @option
2668 @item -h
2669 Print the help
2670 @item -L path
2671 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2672 @item -s size
2673 Set the x86 stack size in bytes (default=524288)
2674 @end table
2675
2676 Debug options:
2677
2678 @table @option
2679 @item -d
2680 Activate log (logfile=/tmp/qemu.log)
2681 @item -p pagesize
2682 Act as if the host page size was 'pagesize' bytes
2683 @end table
2684
2685 Environment variables:
2686
2687 @table @env
2688 @item QEMU_STRACE
2689 Print system calls and arguments similar to the 'strace' program
2690 (NOTE: the actual 'strace' program will not work because the user
2691 space emulator hasn't implemented ptrace).  At the moment this is
2692 incomplete.  All system calls that don't have a specific argument
2693 format are printed with information for six arguments.  Many
2694 flag-style arguments don't have decoders and will show up as numbers.
2695 @end table
2696
2697 @node Other binaries
2698 @subsection Other binaries
2699
2700 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2701 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2702 configurations), and arm-uclinux bFLT format binaries.
2703
2704 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2705 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2706 coldfire uClinux bFLT format binaries.
2707
2708 The binary format is detected automatically.
2709
2710 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2711 (Sparc64 CPU, 32 bit ABI).
2712
2713 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2714 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2715
2716 @node Mac OS X/Darwin User space emulator
2717 @section Mac OS X/Darwin User space emulator
2718
2719 @menu
2720 * Mac OS X/Darwin Status::
2721 * Mac OS X/Darwin Quick Start::
2722 * Mac OS X/Darwin Command line options::
2723 @end menu
2724
2725 @node Mac OS X/Darwin Status
2726 @subsection Mac OS X/Darwin Status
2727
2728 @itemize @minus
2729 @item
2730 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2731 @item
2732 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2733 @item
2734 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2735 @item
2736 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2737 @end itemize
2738
2739 [1] If you're host commpage can be executed by qemu.
2740
2741 @node Mac OS X/Darwin Quick Start
2742 @subsection Quick Start
2743
2744 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2745 itself and all the target dynamic libraries used by it. If you don't have the FAT
2746 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2747 CD or compile them by hand.
2748
2749 @itemize
2750
2751 @item On x86, you can just try to launch any process by using the native
2752 libraries:
2753
2754 @example
2755 qemu-i386 /bin/ls
2756 @end example
2757
2758 or to run the ppc version of the executable:
2759
2760 @example
2761 qemu-ppc /bin/ls
2762 @end example
2763
2764 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2765 are installed:
2766
2767 @example
2768 qemu-i386 -L /opt/x86_root/ /bin/ls
2769 @end example
2770
2771 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2772 @file{/opt/x86_root/usr/bin/dyld}.
2773
2774 @end itemize
2775
2776 @node Mac OS X/Darwin Command line options
2777 @subsection Command line options
2778
2779 @example
2780 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2781 @end example
2782
2783 @table @option
2784 @item -h
2785 Print the help
2786 @item -L path
2787 Set the library root path (default=/)
2788 @item -s size
2789 Set the stack size in bytes (default=524288)
2790 @end table
2791
2792 Debug options:
2793
2794 @table @option
2795 @item -d
2796 Activate log (logfile=/tmp/qemu.log)
2797 @item -p pagesize
2798 Act as if the host page size was 'pagesize' bytes
2799 @end table
2800
2801 @node compilation
2802 @chapter Compilation from the sources
2803
2804 @menu
2805 * Linux/Unix::
2806 * Windows::
2807 * Cross compilation for Windows with Linux::
2808 * Mac OS X::
2809 @end menu
2810
2811 @node Linux/Unix
2812 @section Linux/Unix
2813
2814 @subsection Compilation
2815
2816 First you must decompress the sources:
2817 @example
2818 cd /tmp
2819 tar zxvf qemu-x.y.z.tar.gz
2820 cd qemu-x.y.z
2821 @end example
2822
2823 Then you configure QEMU and build it (usually no options are needed):
2824 @example
2825 ./configure
2826 make
2827 @end example
2828
2829 Then type as root user:
2830 @example
2831 make install
2832 @end example
2833 to install QEMU in @file{/usr/local}.
2834
2835 @subsection GCC version
2836
2837 In order to compile QEMU successfully, it is very important that you
2838 have the right tools. The most important one is gcc. On most hosts and
2839 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2840 Linux distribution includes a gcc 4.x compiler, you can usually
2841 install an older version (it is invoked by @code{gcc32} or
2842 @code{gcc34}). The QEMU configure script automatically probes for
2843 these older versions so that usually you don't have to do anything.
2844
2845 @node Windows
2846 @section Windows
2847
2848 @itemize
2849 @item Install the current versions of MSYS and MinGW from
2850 @url{http://www.mingw.org/}. You can find detailed installation
2851 instructions in the download section and the FAQ.
2852
2853 @item Download
2854 the MinGW development library of SDL 1.2.x
2855 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2856 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2857 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2858 directory. Edit the @file{sdl-config} script so that it gives the
2859 correct SDL directory when invoked.
2860
2861 @item Extract the current version of QEMU.
2862
2863 @item Start the MSYS shell (file @file{msys.bat}).
2864
2865 @item Change to the QEMU directory. Launch @file{./configure} and
2866 @file{make}.  If you have problems using SDL, verify that
2867 @file{sdl-config} can be launched from the MSYS command line.
2868
2869 @item You can install QEMU in @file{Program Files/Qemu} by typing
2870 @file{make install}. Don't forget to copy @file{SDL.dll} in
2871 @file{Program Files/Qemu}.
2872
2873 @end itemize
2874
2875 @node Cross compilation for Windows with Linux
2876 @section Cross compilation for Windows with Linux
2877
2878 @itemize
2879 @item
2880 Install the MinGW cross compilation tools available at
2881 @url{http://www.mingw.org/}.
2882
2883 @item
2884 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2885 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2886 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2887 the QEMU configuration script.
2888
2889 @item
2890 Configure QEMU for Windows cross compilation:
2891 @example
2892 ./configure --enable-mingw32
2893 @end example
2894 If necessary, you can change the cross-prefix according to the prefix
2895 chosen for the MinGW tools with --cross-prefix. You can also use
2896 --prefix to set the Win32 install path.
2897
2898 @item You can install QEMU in the installation directory by typing
2899 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2900 installation directory.
2901
2902 @end itemize
2903
2904 Note: Currently, Wine does not seem able to launch
2905 QEMU for Win32.
2906
2907 @node Mac OS X
2908 @section Mac OS X
2909
2910 The Mac OS X patches are not fully merged in QEMU, so you should look
2911 at the QEMU mailing list archive to have all the necessary
2912 information.
2913
2914 @node Index
2915 @chapter Index
2916 @printindex cp
2917
2918 @bye