Add CDC-Ethernet usb NIC (original patch from Thomas Sailer).
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @end itemize
93
94 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95
96 @node Installation
97 @chapter Installation
98
99 If you want to compile QEMU yourself, see @ref{compilation}.
100
101 @menu
102 * install_linux::   Linux
103 * install_windows:: Windows
104 * install_mac::     Macintosh
105 @end menu
106
107 @node install_linux
108 @section Linux
109
110 If a precompiled package is available for your distribution - you just
111 have to install it. Otherwise, see @ref{compilation}.
112
113 @node install_windows
114 @section Windows
115
116 Download the experimental binary installer at
117 @url{http://www.free.oszoo.org/@/download.html}.
118
119 @node install_mac
120 @section Mac OS X
121
122 Download the experimental binary installer at
123 @url{http://www.free.oszoo.org/@/download.html}.
124
125 @node QEMU PC System emulator
126 @chapter QEMU PC System emulator
127
128 @menu
129 * pcsys_introduction:: Introduction
130 * pcsys_quickstart::   Quick Start
131 * sec_invocation::     Invocation
132 * pcsys_keys::         Keys
133 * pcsys_monitor::      QEMU Monitor
134 * disk_images::        Disk Images
135 * pcsys_network::      Network emulation
136 * direct_linux_boot::  Direct Linux Boot
137 * pcsys_usb::          USB emulation
138 * vnc_security::       VNC security
139 * gdb_usage::          GDB usage
140 * pcsys_os_specific::  Target OS specific information
141 @end menu
142
143 @node pcsys_introduction
144 @section Introduction
145
146 @c man begin DESCRIPTION
147
148 The QEMU PC System emulator simulates the
149 following peripherals:
150
151 @itemize @minus
152 @item
153 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 @item
155 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 extensions (hardware level, including all non standard modes).
157 @item
158 PS/2 mouse and keyboard
159 @item
160 2 PCI IDE interfaces with hard disk and CD-ROM support
161 @item
162 Floppy disk
163 @item
164 PCI/ISA PCI network adapters
165 @item
166 Serial ports
167 @item
168 Creative SoundBlaster 16 sound card
169 @item
170 ENSONIQ AudioPCI ES1370 sound card
171 @item
172 Intel 82801AA AC97 Audio compatible sound card
173 @item
174 Adlib(OPL2) - Yamaha YM3812 compatible chip
175 @item
176 Gravis Ultrasound GF1 sound card
177 @item
178 CS4231A compatible sound card
179 @item
180 PCI UHCI USB controller and a virtual USB hub.
181 @end itemize
182
183 SMP is supported with up to 255 CPUs.
184
185 Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 was configured with --audio-card-list option containing the name(s) of
187 required card(s).
188
189 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 VGA BIOS.
191
192 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
194 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 by Tibor "TS" Schütz.
196
197 CS4231A is the chip used in Windows Sound System and GUSMAX products
198
199 @c man end
200
201 @node pcsys_quickstart
202 @section Quick Start
203
204 Download and uncompress the linux image (@file{linux.img}) and type:
205
206 @example
207 qemu linux.img
208 @end example
209
210 Linux should boot and give you a prompt.
211
212 @node sec_invocation
213 @section Invocation
214
215 @example
216 @c man begin SYNOPSIS
217 usage: qemu [options] [@var{disk_image}]
218 @c man end
219 @end example
220
221 @c man begin OPTIONS
222 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
223
224 General options:
225 @table @option
226 @item -M @var{machine}
227 Select the emulated @var{machine} (@code{-M ?} for list)
228
229 @item -fda @var{file}
230 @item -fdb @var{file}
231 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233
234 @item -hda @var{file}
235 @item -hdb @var{file}
236 @item -hdc @var{file}
237 @item -hdd @var{file}
238 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239
240 @item -cdrom @var{file}
241 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 @option{-cdrom} at the same time). You can use the host CD-ROM by
243 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244
245 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246
247 Define a new drive. Valid options are:
248
249 @table @code
250 @item file=@var{file}
251 This option defines which disk image (@pxref{disk_images}) to use with
252 this drive. If the filename contains comma, you must double it
253 (for instance, "file=my,,file" to use file "my,file").
254 @item if=@var{interface}
255 This option defines on which type on interface the drive is connected.
256 Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 @item bus=@var{bus},unit=@var{unit}
258 These options define where is connected the drive by defining the bus number and
259 the unit id.
260 @item index=@var{index}
261 This option defines where is connected the drive by using an index in the list
262 of available connectors of a given interface type.
263 @item media=@var{media}
264 This option defines the type of the media: disk or cdrom.
265 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 These options have the same definition as they have in @option{-hdachs}.
267 @item snapshot=@var{snapshot}
268 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 @item cache=@var{cache}
270 @var{cache} is "on" or "off" and allows to disable host cache to access data.
271 @item format=@var{format}
272 Specify which disk @var{format} will be used rather than detecting
273 the format.  Can be used to specifiy format=raw to avoid interpreting
274 an untrusted format header.
275 @end table
276
277 Instead of @option{-cdrom} you can use:
278 @example
279 qemu -drive file=file,index=2,media=cdrom
280 @end example
281
282 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283 use:
284 @example
285 qemu -drive file=file,index=0,media=disk
286 qemu -drive file=file,index=1,media=disk
287 qemu -drive file=file,index=2,media=disk
288 qemu -drive file=file,index=3,media=disk
289 @end example
290
291 You can connect a CDROM to the slave of ide0:
292 @example
293 qemu -drive file=file,if=ide,index=1,media=cdrom
294 @end example
295
296 If you don't specify the "file=" argument, you define an empty drive:
297 @example
298 qemu -drive if=ide,index=1,media=cdrom
299 @end example
300
301 You can connect a SCSI disk with unit ID 6 on the bus #0:
302 @example
303 qemu -drive file=file,if=scsi,bus=0,unit=6
304 @end example
305
306 Instead of @option{-fda}, @option{-fdb}, you can use:
307 @example
308 qemu -drive file=file,index=0,if=floppy
309 qemu -drive file=file,index=1,if=floppy
310 @end example
311
312 By default, @var{interface} is "ide" and @var{index} is automatically
313 incremented:
314 @example
315 qemu -drive file=a -drive file=b"
316 @end example
317 is interpreted like:
318 @example
319 qemu -hda a -hdb b
320 @end example
321
322 @item -boot [a|c|d|n]
323 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324 is the default.
325
326 @item -snapshot
327 Write to temporary files instead of disk image files. In this case,
328 the raw disk image you use is not written back. You can however force
329 the write back by pressing @key{C-a s} (@pxref{disk_images}).
330
331 @item -no-fd-bootchk
332 Disable boot signature checking for floppy disks in Bochs BIOS. It may
333 be needed to boot from old floppy disks.
334
335 @item -m @var{megs}
336 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338 gigabytes respectively.
339
340 @item -smp @var{n}
341 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343 to 4.
344
345 @item -audio-help
346
347 Will show the audio subsystem help: list of drivers, tunable
348 parameters.
349
350 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351
352 Enable audio and selected sound hardware. Use ? to print all
353 available sound hardware.
354
355 @example
356 qemu -soundhw sb16,adlib hda
357 qemu -soundhw es1370 hda
358 qemu -soundhw ac97 hda
359 qemu -soundhw all hda
360 qemu -soundhw ?
361 @end example
362
363 Note that Linux's i810_audio OSS kernel (for AC97) module might
364 require manually specifying clocking.
365
366 @example
367 modprobe i810_audio clocking=48000
368 @end example
369
370 @item -localtime
371 Set the real time clock to local time (the default is to UTC
372 time). This option is needed to have correct date in MS-DOS or
373 Windows.
374
375 @item -startdate @var{date}
376 Set the initial date of the real time clock. Valid format for
377 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378 @code{2006-06-17}. The default value is @code{now}.
379
380 @item -pidfile @var{file}
381 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382 from a script.
383
384 @item -daemonize
385 Daemonize the QEMU process after initialization.  QEMU will not detach from
386 standard IO until it is ready to receive connections on any of its devices.
387 This option is a useful way for external programs to launch QEMU without having
388 to cope with initialization race conditions.
389
390 @item -win2k-hack
391 Use it when installing Windows 2000 to avoid a disk full bug. After
392 Windows 2000 is installed, you no longer need this option (this option
393 slows down the IDE transfers).
394
395 @item -option-rom @var{file}
396 Load the contents of @var{file} as an option ROM.
397 This option is useful to load things like EtherBoot.
398
399 @item -name @var{name}
400 Sets the @var{name} of the guest.
401 This name will be display in the SDL window caption.
402 The @var{name} will also be used for the VNC server.
403
404 @end table
405
406 Display options:
407 @table @option
408
409 @item -nographic
410
411 Normally, QEMU uses SDL to display the VGA output. With this option,
412 you can totally disable graphical output so that QEMU is a simple
413 command line application. The emulated serial port is redirected on
414 the console. Therefore, you can still use QEMU to debug a Linux kernel
415 with a serial console.
416
417 @item -curses
418
419 Normally, QEMU uses SDL to display the VGA output.  With this option,
420 QEMU can display the VGA output when in text mode using a 
421 curses/ncurses interface.  Nothing is displayed in graphical mode.
422
423 @item -no-frame
424
425 Do not use decorations for SDL windows and start them using the whole
426 available screen space. This makes the using QEMU in a dedicated desktop
427 workspace more convenient.
428
429 @item -no-quit
430
431 Disable SDL window close capability.
432
433 @item -full-screen
434 Start in full screen.
435
436 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437
438 Normally, QEMU uses SDL to display the VGA output.  With this option,
439 you can have QEMU listen on VNC display @var{display} and redirect the VGA
440 display over the VNC session.  It is very useful to enable the usb
441 tablet device when using this option (option @option{-usbdevice
442 tablet}). When using the VNC display, you must use the @option{-k}
443 parameter to set the keyboard layout if you are not using en-us. Valid
444 syntax for the @var{display} is
445
446 @table @code
447
448 @item @var{host}:@var{d}
449
450 TCP connections will only be allowed from @var{host} on display @var{d}.
451 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452 be omitted in which case the server will accept connections from any host.
453
454 @item @code{unix}:@var{path}
455
456 Connections will be allowed over UNIX domain sockets where @var{path} is the
457 location of a unix socket to listen for connections on.
458
459 @item none
460
461 VNC is initialized but not started. The monitor @code{change} command
462 can be used to later start the VNC server.
463
464 @end table
465
466 Following the @var{display} value there may be one or more @var{option} flags
467 separated by commas. Valid options are
468
469 @table @code
470
471 @item reverse
472
473 Connect to a listening VNC client via a ``reverse'' connection. The
474 client is specified by the @var{display}. For reverse network
475 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476 is a TCP port number, not a display number.
477
478 @item password
479
480 Require that password based authentication is used for client connections.
481 The password must be set separately using the @code{change} command in the
482 @ref{pcsys_monitor}
483
484 @item tls
485
486 Require that client use TLS when communicating with the VNC server. This
487 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488 attack. It is recommended that this option be combined with either the
489 @var{x509} or @var{x509verify} options.
490
491 @item x509=@var{/path/to/certificate/dir}
492
493 Valid if @option{tls} is specified. Require that x509 credentials are used
494 for negotiating the TLS session. The server will send its x509 certificate
495 to the client. It is recommended that a password be set on the VNC server
496 to provide authentication of the client when this is used. The path following
497 this option specifies where the x509 certificates are to be loaded from.
498 See the @ref{vnc_security} section for details on generating certificates.
499
500 @item x509verify=@var{/path/to/certificate/dir}
501
502 Valid if @option{tls} is specified. Require that x509 credentials are used
503 for negotiating the TLS session. The server will send its x509 certificate
504 to the client, and request that the client send its own x509 certificate.
505 The server will validate the client's certificate against the CA certificate,
506 and reject clients when validation fails. If the certificate authority is
507 trusted, this is a sufficient authentication mechanism. You may still wish
508 to set a password on the VNC server as a second authentication layer. The
509 path following this option specifies where the x509 certificates are to
510 be loaded from. See the @ref{vnc_security} section for details on generating
511 certificates.
512
513 @end table
514
515 @item -k @var{language}
516
517 Use keyboard layout @var{language} (for example @code{fr} for
518 French). This option is only needed where it is not easy to get raw PC
519 keycodes (e.g. on Macs, with some X11 servers or with a VNC
520 display). You don't normally need to use it on PC/Linux or PC/Windows
521 hosts.
522
523 The available layouts are:
524 @example
525 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528 @end example
529
530 The default is @code{en-us}.
531
532 @end table
533
534 USB options:
535 @table @option
536
537 @item -usb
538 Enable the USB driver (will be the default soon)
539
540 @item -usbdevice @var{devname}
541 Add the USB device @var{devname}. @xref{usb_devices}.
542
543 @table @code
544
545 @item mouse
546 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547
548 @item tablet
549 Pointer device that uses absolute coordinates (like a touchscreen). This
550 means qemu is able to report the mouse position without having to grab the
551 mouse. Also overrides the PS/2 mouse emulation when activated.
552
553 @item disk:file
554 Mass storage device based on file
555
556 @item host:bus.addr
557 Pass through the host device identified by bus.addr (Linux only).
558
559 @item host:vendor_id:product_id
560 Pass through the host device identified by vendor_id:product_id (Linux only).
561
562 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563 Serial converter to host character device @var{dev}, see @code{-serial} for the
564 available devices.
565
566 @item braille
567 Braille device.  This will use BrlAPI to display the braille output on a real
568 or fake device.
569
570 @item net:nic_num
571 Network adapter that supports CDC ethernet and RNDIS protocols.
572
573 @end table
574
575 @end table
576
577 Network options:
578
579 @table @option
580
581 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
582 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
583 = 0 is the default). The NIC is an ne2k_pci by default on the PC
584 target. Optionally, the MAC address can be changed. If no
585 @option{-net} option is specified, a single NIC is created.
586 Qemu can emulate several different models of network card.
587 Valid values for @var{type} are
588 @code{i82551}, @code{i82557b}, @code{i82559er},
589 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
590 @code{e1000}, @code{smc91c111}, @code{lance}, @code{mcf_fec} and @code{usb}.
591 Not all devices are supported on all targets.  Use -net nic,model=?
592 for a list of available devices for your target.
593
594 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
595 Use the user mode network stack which requires no administrator
596 privilege to run.  @option{hostname=name} can be used to specify the client
597 hostname reported by the builtin DHCP server.
598
599 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
600 Connect the host TAP network interface @var{name} to VLAN @var{n} and
601 use the network script @var{file} to configure it. The default
602 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
603 disable script execution. If @var{name} is not
604 provided, the OS automatically provides one. @option{fd}=@var{h} can be
605 used to specify the handle of an already opened host TAP interface. Example:
606
607 @example
608 qemu linux.img -net nic -net tap
609 @end example
610
611 More complicated example (two NICs, each one connected to a TAP device)
612 @example
613 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
614                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
615 @end example
616
617
618 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
619
620 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
621 machine using a TCP socket connection. If @option{listen} is
622 specified, QEMU waits for incoming connections on @var{port}
623 (@var{host} is optional). @option{connect} is used to connect to
624 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
625 specifies an already opened TCP socket.
626
627 Example:
628 @example
629 # launch a first QEMU instance
630 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
631                -net socket,listen=:1234
632 # connect the VLAN 0 of this instance to the VLAN 0
633 # of the first instance
634 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
635                -net socket,connect=127.0.0.1:1234
636 @end example
637
638 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
639
640 Create a VLAN @var{n} shared with another QEMU virtual
641 machines using a UDP multicast socket, effectively making a bus for
642 every QEMU with same multicast address @var{maddr} and @var{port}.
643 NOTES:
644 @enumerate
645 @item
646 Several QEMU can be running on different hosts and share same bus (assuming
647 correct multicast setup for these hosts).
648 @item
649 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
650 @url{http://user-mode-linux.sf.net}.
651 @item
652 Use @option{fd=h} to specify an already opened UDP multicast socket.
653 @end enumerate
654
655 Example:
656 @example
657 # launch one QEMU instance
658 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
659                -net socket,mcast=230.0.0.1:1234
660 # launch another QEMU instance on same "bus"
661 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
662                -net socket,mcast=230.0.0.1:1234
663 # launch yet another QEMU instance on same "bus"
664 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
665                -net socket,mcast=230.0.0.1:1234
666 @end example
667
668 Example (User Mode Linux compat.):
669 @example
670 # launch QEMU instance (note mcast address selected
671 # is UML's default)
672 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
673                -net socket,mcast=239.192.168.1:1102
674 # launch UML
675 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
676 @end example
677
678 @item -net none
679 Indicate that no network devices should be configured. It is used to
680 override the default configuration (@option{-net nic -net user}) which
681 is activated if no @option{-net} options are provided.
682
683 @item -tftp @var{dir}
684 When using the user mode network stack, activate a built-in TFTP
685 server. The files in @var{dir} will be exposed as the root of a TFTP server.
686 The TFTP client on the guest must be configured in binary mode (use the command
687 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
688 usual 10.0.2.2.
689
690 @item -bootp @var{file}
691 When using the user mode network stack, broadcast @var{file} as the BOOTP
692 filename.  In conjunction with @option{-tftp}, this can be used to network boot
693 a guest from a local directory.
694
695 Example (using pxelinux):
696 @example
697 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
698 @end example
699
700 @item -smb @var{dir}
701 When using the user mode network stack, activate a built-in SMB
702 server so that Windows OSes can access to the host files in @file{@var{dir}}
703 transparently.
704
705 In the guest Windows OS, the line:
706 @example
707 10.0.2.4 smbserver
708 @end example
709 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
710 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
711
712 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
713
714 Note that a SAMBA server must be installed on the host OS in
715 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
716 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
717
718 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
719
720 When using the user mode network stack, redirect incoming TCP or UDP
721 connections to the host port @var{host-port} to the guest
722 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
723 is not specified, its value is 10.0.2.15 (default address given by the
724 built-in DHCP server).
725
726 For example, to redirect host X11 connection from screen 1 to guest
727 screen 0, use the following:
728
729 @example
730 # on the host
731 qemu -redir tcp:6001::6000 [...]
732 # this host xterm should open in the guest X11 server
733 xterm -display :1
734 @end example
735
736 To redirect telnet connections from host port 5555 to telnet port on
737 the guest, use the following:
738
739 @example
740 # on the host
741 qemu -redir tcp:5555::23 [...]
742 telnet localhost 5555
743 @end example
744
745 Then when you use on the host @code{telnet localhost 5555}, you
746 connect to the guest telnet server.
747
748 @end table
749
750 Linux boot specific: When using these options, you can use a given
751 Linux kernel without installing it in the disk image. It can be useful
752 for easier testing of various kernels.
753
754 @table @option
755
756 @item -kernel @var{bzImage}
757 Use @var{bzImage} as kernel image.
758
759 @item -append @var{cmdline}
760 Use @var{cmdline} as kernel command line
761
762 @item -initrd @var{file}
763 Use @var{file} as initial ram disk.
764
765 @end table
766
767 Debug/Expert options:
768 @table @option
769
770 @item -serial @var{dev}
771 Redirect the virtual serial port to host character device
772 @var{dev}. The default device is @code{vc} in graphical mode and
773 @code{stdio} in non graphical mode.
774
775 This option can be used several times to simulate up to 4 serials
776 ports.
777
778 Use @code{-serial none} to disable all serial ports.
779
780 Available character devices are:
781 @table @code
782 @item vc[:WxH]
783 Virtual console. Optionally, a width and height can be given in pixel with
784 @example
785 vc:800x600
786 @end example
787 It is also possible to specify width or height in characters:
788 @example
789 vc:80Cx24C
790 @end example
791 @item pty
792 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
793 @item none
794 No device is allocated.
795 @item null
796 void device
797 @item /dev/XXX
798 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
799 parameters are set according to the emulated ones.
800 @item /dev/parport@var{N}
801 [Linux only, parallel port only] Use host parallel port
802 @var{N}. Currently SPP and EPP parallel port features can be used.
803 @item file:@var{filename}
804 Write output to @var{filename}. No character can be read.
805 @item stdio
806 [Unix only] standard input/output
807 @item pipe:@var{filename}
808 name pipe @var{filename}
809 @item COM@var{n}
810 [Windows only] Use host serial port @var{n}
811 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
812 This implements UDP Net Console.
813 When @var{remote_host} or @var{src_ip} are not specified
814 they default to @code{0.0.0.0}.
815 When not using a specified @var{src_port} a random port is automatically chosen.
816
817 If you just want a simple readonly console you can use @code{netcat} or
818 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
819 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
820 will appear in the netconsole session.
821
822 If you plan to send characters back via netconsole or you want to stop
823 and start qemu a lot of times, you should have qemu use the same
824 source port each time by using something like @code{-serial
825 udp::4555@@:4556} to qemu. Another approach is to use a patched
826 version of netcat which can listen to a TCP port and send and receive
827 characters via udp.  If you have a patched version of netcat which
828 activates telnet remote echo and single char transfer, then you can
829 use the following options to step up a netcat redirector to allow
830 telnet on port 5555 to access the qemu port.
831 @table @code
832 @item Qemu Options:
833 -serial udp::4555@@:4556
834 @item netcat options:
835 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
836 @item telnet options:
837 localhost 5555
838 @end table
839
840
841 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
842 The TCP Net Console has two modes of operation.  It can send the serial
843 I/O to a location or wait for a connection from a location.  By default
844 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
845 the @var{server} option QEMU will wait for a client socket application
846 to connect to the port before continuing, unless the @code{nowait}
847 option was specified.  The @code{nodelay} option disables the Nagle buffering
848 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
849 one TCP connection at a time is accepted. You can use @code{telnet} to
850 connect to the corresponding character device.
851 @table @code
852 @item Example to send tcp console to 192.168.0.2 port 4444
853 -serial tcp:192.168.0.2:4444
854 @item Example to listen and wait on port 4444 for connection
855 -serial tcp::4444,server
856 @item Example to not wait and listen on ip 192.168.0.100 port 4444
857 -serial tcp:192.168.0.100:4444,server,nowait
858 @end table
859
860 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
861 The telnet protocol is used instead of raw tcp sockets.  The options
862 work the same as if you had specified @code{-serial tcp}.  The
863 difference is that the port acts like a telnet server or client using
864 telnet option negotiation.  This will also allow you to send the
865 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
866 sequence.  Typically in unix telnet you do it with Control-] and then
867 type "send break" followed by pressing the enter key.
868
869 @item unix:@var{path}[,server][,nowait]
870 A unix domain socket is used instead of a tcp socket.  The option works the
871 same as if you had specified @code{-serial tcp} except the unix domain socket
872 @var{path} is used for connections.
873
874 @item mon:@var{dev_string}
875 This is a special option to allow the monitor to be multiplexed onto
876 another serial port.  The monitor is accessed with key sequence of
877 @key{Control-a} and then pressing @key{c}. See monitor access
878 @ref{pcsys_keys} in the -nographic section for more keys.
879 @var{dev_string} should be any one of the serial devices specified
880 above.  An example to multiplex the monitor onto a telnet server
881 listening on port 4444 would be:
882 @table @code
883 @item -serial mon:telnet::4444,server,nowait
884 @end table
885
886 @item braille
887 Braille device.  This will use BrlAPI to display the braille output on a real
888 or fake device.
889
890 @end table
891
892 @item -parallel @var{dev}
893 Redirect the virtual parallel port to host device @var{dev} (same
894 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
895 be used to use hardware devices connected on the corresponding host
896 parallel port.
897
898 This option can be used several times to simulate up to 3 parallel
899 ports.
900
901 Use @code{-parallel none} to disable all parallel ports.
902
903 @item -monitor @var{dev}
904 Redirect the monitor to host device @var{dev} (same devices as the
905 serial port).
906 The default device is @code{vc} in graphical mode and @code{stdio} in
907 non graphical mode.
908
909 @item -echr numeric_ascii_value
910 Change the escape character used for switching to the monitor when using
911 monitor and serial sharing.  The default is @code{0x01} when using the
912 @code{-nographic} option.  @code{0x01} is equal to pressing
913 @code{Control-a}.  You can select a different character from the ascii
914 control keys where 1 through 26 map to Control-a through Control-z.  For
915 instance you could use the either of the following to change the escape
916 character to Control-t.
917 @table @code
918 @item -echr 0x14
919 @item -echr 20
920 @end table
921
922 @item -s
923 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
924 @item -p @var{port}
925 Change gdb connection port.  @var{port} can be either a decimal number
926 to specify a TCP port, or a host device (same devices as the serial port).
927 @item -S
928 Do not start CPU at startup (you must type 'c' in the monitor).
929 @item -d
930 Output log in /tmp/qemu.log
931 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
932 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
933 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
934 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
935 all those parameters. This option is useful for old MS-DOS disk
936 images.
937
938 @item -L path
939 Set the directory for the BIOS, VGA BIOS and keymaps.
940
941 @item -std-vga
942 Simulate a standard VGA card with Bochs VBE extensions (default is
943 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
944 VBE extensions (e.g. Windows XP) and if you want to use high
945 resolution modes (>= 1280x1024x16) then you should use this option.
946
947 @item -no-acpi
948 Disable ACPI (Advanced Configuration and Power Interface) support. Use
949 it if your guest OS complains about ACPI problems (PC target machine
950 only).
951
952 @item -no-reboot
953 Exit instead of rebooting.
954
955 @item -no-shutdown
956 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
957 This allows for instance switching to monitor to commit changes to the
958 disk image.
959
960 @item -loadvm file
961 Start right away with a saved state (@code{loadvm} in monitor)
962
963 @item -semihosting
964 Enable semihosting syscall emulation (ARM and M68K target machines only).
965
966 On ARM this implements the "Angel" interface.
967 On M68K this implements the "ColdFire GDB" interface used by libgloss.
968
969 Note that this allows guest direct access to the host filesystem,
970 so should only be used with trusted guest OS.
971
972 @item -icount [N|auto]
973 Enable virtual instruction counter.  The virtual cpu will execute one
974 instruction every 2^N ns of virtual time.  If @code{auto} is specified
975 then the virtual cpu speed will be automatically adjusted to keep virtual
976 time within a few seconds of real time.
977
978 Note that while this option can give deterministic behavior, it does not
979 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
980 order cores with complex cache hierarchies.  The number of instructions
981 executed often has little or no correlation with actual performance.
982 @end table
983
984 @c man end
985
986 @node pcsys_keys
987 @section Keys
988
989 @c man begin OPTIONS
990
991 During the graphical emulation, you can use the following keys:
992 @table @key
993 @item Ctrl-Alt-f
994 Toggle full screen
995
996 @item Ctrl-Alt-n
997 Switch to virtual console 'n'. Standard console mappings are:
998 @table @emph
999 @item 1
1000 Target system display
1001 @item 2
1002 Monitor
1003 @item 3
1004 Serial port
1005 @end table
1006
1007 @item Ctrl-Alt
1008 Toggle mouse and keyboard grab.
1009 @end table
1010
1011 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1012 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1013
1014 During emulation, if you are using the @option{-nographic} option, use
1015 @key{Ctrl-a h} to get terminal commands:
1016
1017 @table @key
1018 @item Ctrl-a h
1019 Print this help
1020 @item Ctrl-a x
1021 Exit emulator
1022 @item Ctrl-a s
1023 Save disk data back to file (if -snapshot)
1024 @item Ctrl-a t
1025 toggle console timestamps
1026 @item Ctrl-a b
1027 Send break (magic sysrq in Linux)
1028 @item Ctrl-a c
1029 Switch between console and monitor
1030 @item Ctrl-a Ctrl-a
1031 Send Ctrl-a
1032 @end table
1033 @c man end
1034
1035 @ignore
1036
1037 @c man begin SEEALSO
1038 The HTML documentation of QEMU for more precise information and Linux
1039 user mode emulator invocation.
1040 @c man end
1041
1042 @c man begin AUTHOR
1043 Fabrice Bellard
1044 @c man end
1045
1046 @end ignore
1047
1048 @node pcsys_monitor
1049 @section QEMU Monitor
1050
1051 The QEMU monitor is used to give complex commands to the QEMU
1052 emulator. You can use it to:
1053
1054 @itemize @minus
1055
1056 @item
1057 Remove or insert removable media images
1058 (such as CD-ROM or floppies).
1059
1060 @item
1061 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1062 from a disk file.
1063
1064 @item Inspect the VM state without an external debugger.
1065
1066 @end itemize
1067
1068 @subsection Commands
1069
1070 The following commands are available:
1071
1072 @table @option
1073
1074 @item help or ? [@var{cmd}]
1075 Show the help for all commands or just for command @var{cmd}.
1076
1077 @item commit
1078 Commit changes to the disk images (if -snapshot is used).
1079
1080 @item info @var{subcommand}
1081 Show various information about the system state.
1082
1083 @table @option
1084 @item info network
1085 show the various VLANs and the associated devices
1086 @item info block
1087 show the block devices
1088 @item info registers
1089 show the cpu registers
1090 @item info history
1091 show the command line history
1092 @item info pci
1093 show emulated PCI device
1094 @item info usb
1095 show USB devices plugged on the virtual USB hub
1096 @item info usbhost
1097 show all USB host devices
1098 @item info capture
1099 show information about active capturing
1100 @item info snapshots
1101 show list of VM snapshots
1102 @item info mice
1103 show which guest mouse is receiving events
1104 @end table
1105
1106 @item q or quit
1107 Quit the emulator.
1108
1109 @item eject [-f] @var{device}
1110 Eject a removable medium (use -f to force it).
1111
1112 @item change @var{device} @var{setting}
1113
1114 Change the configuration of a device.
1115
1116 @table @option
1117 @item change @var{diskdevice} @var{filename}
1118 Change the medium for a removable disk device to point to @var{filename}. eg
1119
1120 @example
1121 (qemu) change ide1-cd0 /path/to/some.iso
1122 @end example
1123
1124 @item change vnc @var{display},@var{options}
1125 Change the configuration of the VNC server. The valid syntax for @var{display}
1126 and @var{options} are described at @ref{sec_invocation}. eg
1127
1128 @example
1129 (qemu) change vnc localhost:1
1130 @end example
1131
1132 @item change vnc password
1133
1134 Change the password associated with the VNC server. The monitor will prompt for
1135 the new password to be entered. VNC passwords are only significant upto 8 letters.
1136 eg.
1137
1138 @example
1139 (qemu) change vnc password
1140 Password: ********
1141 @end example
1142
1143 @end table
1144
1145 @item screendump @var{filename}
1146 Save screen into PPM image @var{filename}.
1147
1148 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1149 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1150 with optional scroll axis @var{dz}.
1151
1152 @item mouse_button @var{val}
1153 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1154
1155 @item mouse_set @var{index}
1156 Set which mouse device receives events at given @var{index}, index
1157 can be obtained with
1158 @example
1159 info mice
1160 @end example
1161
1162 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1163 Capture audio into @var{filename}. Using sample rate @var{frequency}
1164 bits per sample @var{bits} and number of channels @var{channels}.
1165
1166 Defaults:
1167 @itemize @minus
1168 @item Sample rate = 44100 Hz - CD quality
1169 @item Bits = 16
1170 @item Number of channels = 2 - Stereo
1171 @end itemize
1172
1173 @item stopcapture @var{index}
1174 Stop capture with a given @var{index}, index can be obtained with
1175 @example
1176 info capture
1177 @end example
1178
1179 @item log @var{item1}[,...]
1180 Activate logging of the specified items to @file{/tmp/qemu.log}.
1181
1182 @item savevm [@var{tag}|@var{id}]
1183 Create a snapshot of the whole virtual machine. If @var{tag} is
1184 provided, it is used as human readable identifier. If there is already
1185 a snapshot with the same tag or ID, it is replaced. More info at
1186 @ref{vm_snapshots}.
1187
1188 @item loadvm @var{tag}|@var{id}
1189 Set the whole virtual machine to the snapshot identified by the tag
1190 @var{tag} or the unique snapshot ID @var{id}.
1191
1192 @item delvm @var{tag}|@var{id}
1193 Delete the snapshot identified by @var{tag} or @var{id}.
1194
1195 @item stop
1196 Stop emulation.
1197
1198 @item c or cont
1199 Resume emulation.
1200
1201 @item gdbserver [@var{port}]
1202 Start gdbserver session (default @var{port}=1234)
1203
1204 @item x/fmt @var{addr}
1205 Virtual memory dump starting at @var{addr}.
1206
1207 @item xp /@var{fmt} @var{addr}
1208 Physical memory dump starting at @var{addr}.
1209
1210 @var{fmt} is a format which tells the command how to format the
1211 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1212
1213 @table @var
1214 @item count
1215 is the number of items to be dumped.
1216
1217 @item format
1218 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1219 c (char) or i (asm instruction).
1220
1221 @item size
1222 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1223 @code{h} or @code{w} can be specified with the @code{i} format to
1224 respectively select 16 or 32 bit code instruction size.
1225
1226 @end table
1227
1228 Examples:
1229 @itemize
1230 @item
1231 Dump 10 instructions at the current instruction pointer:
1232 @example
1233 (qemu) x/10i $eip
1234 0x90107063:  ret
1235 0x90107064:  sti
1236 0x90107065:  lea    0x0(%esi,1),%esi
1237 0x90107069:  lea    0x0(%edi,1),%edi
1238 0x90107070:  ret
1239 0x90107071:  jmp    0x90107080
1240 0x90107073:  nop
1241 0x90107074:  nop
1242 0x90107075:  nop
1243 0x90107076:  nop
1244 @end example
1245
1246 @item
1247 Dump 80 16 bit values at the start of the video memory.
1248 @smallexample
1249 (qemu) xp/80hx 0xb8000
1250 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1251 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1252 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1253 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1254 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1255 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1256 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1257 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1258 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1259 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1260 @end smallexample
1261 @end itemize
1262
1263 @item p or print/@var{fmt} @var{expr}
1264
1265 Print expression value. Only the @var{format} part of @var{fmt} is
1266 used.
1267
1268 @item sendkey @var{keys}
1269
1270 Send @var{keys} to the emulator. Use @code{-} to press several keys
1271 simultaneously. Example:
1272 @example
1273 sendkey ctrl-alt-f1
1274 @end example
1275
1276 This command is useful to send keys that your graphical user interface
1277 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1278
1279 @item system_reset
1280
1281 Reset the system.
1282
1283 @item boot_set @var{bootdevicelist}
1284
1285 Define new values for the boot device list. Those values will override
1286 the values specified on the command line through the @code{-boot} option.
1287
1288 The values that can be specified here depend on the machine type, but are
1289 the same that can be specified in the @code{-boot} command line option.
1290
1291 @item usb_add @var{devname}
1292
1293 Add the USB device @var{devname}.  For details of available devices see
1294 @ref{usb_devices}
1295
1296 @item usb_del @var{devname}
1297
1298 Remove the USB device @var{devname} from the QEMU virtual USB
1299 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1300 command @code{info usb} to see the devices you can remove.
1301
1302 @end table
1303
1304 @subsection Integer expressions
1305
1306 The monitor understands integers expressions for every integer
1307 argument. You can use register names to get the value of specifics
1308 CPU registers by prefixing them with @emph{$}.
1309
1310 @node disk_images
1311 @section Disk Images
1312
1313 Since version 0.6.1, QEMU supports many disk image formats, including
1314 growable disk images (their size increase as non empty sectors are
1315 written), compressed and encrypted disk images. Version 0.8.3 added
1316 the new qcow2 disk image format which is essential to support VM
1317 snapshots.
1318
1319 @menu
1320 * disk_images_quickstart::    Quick start for disk image creation
1321 * disk_images_snapshot_mode:: Snapshot mode
1322 * vm_snapshots::              VM snapshots
1323 * qemu_img_invocation::       qemu-img Invocation
1324 * qemu_nbd_invocation::       qemu-nbd Invocation
1325 * host_drives::               Using host drives
1326 * disk_images_fat_images::    Virtual FAT disk images
1327 * disk_images_nbd::           NBD access
1328 @end menu
1329
1330 @node disk_images_quickstart
1331 @subsection Quick start for disk image creation
1332
1333 You can create a disk image with the command:
1334 @example
1335 qemu-img create myimage.img mysize
1336 @end example
1337 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1338 size in kilobytes. You can add an @code{M} suffix to give the size in
1339 megabytes and a @code{G} suffix for gigabytes.
1340
1341 See @ref{qemu_img_invocation} for more information.
1342
1343 @node disk_images_snapshot_mode
1344 @subsection Snapshot mode
1345
1346 If you use the option @option{-snapshot}, all disk images are
1347 considered as read only. When sectors in written, they are written in
1348 a temporary file created in @file{/tmp}. You can however force the
1349 write back to the raw disk images by using the @code{commit} monitor
1350 command (or @key{C-a s} in the serial console).
1351
1352 @node vm_snapshots
1353 @subsection VM snapshots
1354
1355 VM snapshots are snapshots of the complete virtual machine including
1356 CPU state, RAM, device state and the content of all the writable
1357 disks. In order to use VM snapshots, you must have at least one non
1358 removable and writable block device using the @code{qcow2} disk image
1359 format. Normally this device is the first virtual hard drive.
1360
1361 Use the monitor command @code{savevm} to create a new VM snapshot or
1362 replace an existing one. A human readable name can be assigned to each
1363 snapshot in addition to its numerical ID.
1364
1365 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1366 a VM snapshot. @code{info snapshots} lists the available snapshots
1367 with their associated information:
1368
1369 @example
1370 (qemu) info snapshots
1371 Snapshot devices: hda
1372 Snapshot list (from hda):
1373 ID        TAG                 VM SIZE                DATE       VM CLOCK
1374 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1375 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1376 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1377 @end example
1378
1379 A VM snapshot is made of a VM state info (its size is shown in
1380 @code{info snapshots}) and a snapshot of every writable disk image.
1381 The VM state info is stored in the first @code{qcow2} non removable
1382 and writable block device. The disk image snapshots are stored in
1383 every disk image. The size of a snapshot in a disk image is difficult
1384 to evaluate and is not shown by @code{info snapshots} because the
1385 associated disk sectors are shared among all the snapshots to save
1386 disk space (otherwise each snapshot would need a full copy of all the
1387 disk images).
1388
1389 When using the (unrelated) @code{-snapshot} option
1390 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1391 but they are deleted as soon as you exit QEMU.
1392
1393 VM snapshots currently have the following known limitations:
1394 @itemize
1395 @item
1396 They cannot cope with removable devices if they are removed or
1397 inserted after a snapshot is done.
1398 @item
1399 A few device drivers still have incomplete snapshot support so their
1400 state is not saved or restored properly (in particular USB).
1401 @end itemize
1402
1403 @node qemu_img_invocation
1404 @subsection @code{qemu-img} Invocation
1405
1406 @include qemu-img.texi
1407
1408 @node qemu_nbd_invocation
1409 @subsection @code{qemu-nbd} Invocation
1410
1411 @include qemu-nbd.texi
1412
1413 @node host_drives
1414 @subsection Using host drives
1415
1416 In addition to disk image files, QEMU can directly access host
1417 devices. We describe here the usage for QEMU version >= 0.8.3.
1418
1419 @subsubsection Linux
1420
1421 On Linux, you can directly use the host device filename instead of a
1422 disk image filename provided you have enough privileges to access
1423 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1424 @file{/dev/fd0} for the floppy.
1425
1426 @table @code
1427 @item CD
1428 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1429 specific code to detect CDROM insertion or removal. CDROM ejection by
1430 the guest OS is supported. Currently only data CDs are supported.
1431 @item Floppy
1432 You can specify a floppy device even if no floppy is loaded. Floppy
1433 removal is currently not detected accurately (if you change floppy
1434 without doing floppy access while the floppy is not loaded, the guest
1435 OS will think that the same floppy is loaded).
1436 @item Hard disks
1437 Hard disks can be used. Normally you must specify the whole disk
1438 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1439 see it as a partitioned disk. WARNING: unless you know what you do, it
1440 is better to only make READ-ONLY accesses to the hard disk otherwise
1441 you may corrupt your host data (use the @option{-snapshot} command
1442 line option or modify the device permissions accordingly).
1443 @end table
1444
1445 @subsubsection Windows
1446
1447 @table @code
1448 @item CD
1449 The preferred syntax is the drive letter (e.g. @file{d:}). The
1450 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1451 supported as an alias to the first CDROM drive.
1452
1453 Currently there is no specific code to handle removable media, so it
1454 is better to use the @code{change} or @code{eject} monitor commands to
1455 change or eject media.
1456 @item Hard disks
1457 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1458 where @var{N} is the drive number (0 is the first hard disk).
1459
1460 WARNING: unless you know what you do, it is better to only make
1461 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1462 host data (use the @option{-snapshot} command line so that the
1463 modifications are written in a temporary file).
1464 @end table
1465
1466
1467 @subsubsection Mac OS X
1468
1469 @file{/dev/cdrom} is an alias to the first CDROM.
1470
1471 Currently there is no specific code to handle removable media, so it
1472 is better to use the @code{change} or @code{eject} monitor commands to
1473 change or eject media.
1474
1475 @node disk_images_fat_images
1476 @subsection Virtual FAT disk images
1477
1478 QEMU can automatically create a virtual FAT disk image from a
1479 directory tree. In order to use it, just type:
1480
1481 @example
1482 qemu linux.img -hdb fat:/my_directory
1483 @end example
1484
1485 Then you access access to all the files in the @file{/my_directory}
1486 directory without having to copy them in a disk image or to export
1487 them via SAMBA or NFS. The default access is @emph{read-only}.
1488
1489 Floppies can be emulated with the @code{:floppy:} option:
1490
1491 @example
1492 qemu linux.img -fda fat:floppy:/my_directory
1493 @end example
1494
1495 A read/write support is available for testing (beta stage) with the
1496 @code{:rw:} option:
1497
1498 @example
1499 qemu linux.img -fda fat:floppy:rw:/my_directory
1500 @end example
1501
1502 What you should @emph{never} do:
1503 @itemize
1504 @item use non-ASCII filenames ;
1505 @item use "-snapshot" together with ":rw:" ;
1506 @item expect it to work when loadvm'ing ;
1507 @item write to the FAT directory on the host system while accessing it with the guest system.
1508 @end itemize
1509
1510 @node disk_images_nbd
1511 @subsection NBD access
1512
1513 QEMU can access directly to block device exported using the Network Block Device
1514 protocol.
1515
1516 @example
1517 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1518 @end example
1519
1520 If the NBD server is located on the same host, you can use an unix socket instead
1521 of an inet socket:
1522
1523 @example
1524 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1525 @end example
1526
1527 In this case, the block device must be exported using qemu-nbd:
1528
1529 @example
1530 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1531 @end example
1532
1533 The use of qemu-nbd allows to share a disk between several guests:
1534 @example
1535 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1536 @end example
1537
1538 and then you can use it with two guests:
1539 @example
1540 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1541 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1542 @end example
1543
1544 @node pcsys_network
1545 @section Network emulation
1546
1547 QEMU can simulate several network cards (PCI or ISA cards on the PC
1548 target) and can connect them to an arbitrary number of Virtual Local
1549 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1550 VLAN. VLAN can be connected between separate instances of QEMU to
1551 simulate large networks. For simpler usage, a non privileged user mode
1552 network stack can replace the TAP device to have a basic network
1553 connection.
1554
1555 @subsection VLANs
1556
1557 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1558 connection between several network devices. These devices can be for
1559 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1560 (TAP devices).
1561
1562 @subsection Using TAP network interfaces
1563
1564 This is the standard way to connect QEMU to a real network. QEMU adds
1565 a virtual network device on your host (called @code{tapN}), and you
1566 can then configure it as if it was a real ethernet card.
1567
1568 @subsubsection Linux host
1569
1570 As an example, you can download the @file{linux-test-xxx.tar.gz}
1571 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1572 configure properly @code{sudo} so that the command @code{ifconfig}
1573 contained in @file{qemu-ifup} can be executed as root. You must verify
1574 that your host kernel supports the TAP network interfaces: the
1575 device @file{/dev/net/tun} must be present.
1576
1577 See @ref{sec_invocation} to have examples of command lines using the
1578 TAP network interfaces.
1579
1580 @subsubsection Windows host
1581
1582 There is a virtual ethernet driver for Windows 2000/XP systems, called
1583 TAP-Win32. But it is not included in standard QEMU for Windows,
1584 so you will need to get it separately. It is part of OpenVPN package,
1585 so download OpenVPN from : @url{http://openvpn.net/}.
1586
1587 @subsection Using the user mode network stack
1588
1589 By using the option @option{-net user} (default configuration if no
1590 @option{-net} option is specified), QEMU uses a completely user mode
1591 network stack (you don't need root privilege to use the virtual
1592 network). The virtual network configuration is the following:
1593
1594 @example
1595
1596          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1597                            |          (10.0.2.2)
1598                            |
1599                            ---->  DNS server (10.0.2.3)
1600                            |
1601                            ---->  SMB server (10.0.2.4)
1602 @end example
1603
1604 The QEMU VM behaves as if it was behind a firewall which blocks all
1605 incoming connections. You can use a DHCP client to automatically
1606 configure the network in the QEMU VM. The DHCP server assign addresses
1607 to the hosts starting from 10.0.2.15.
1608
1609 In order to check that the user mode network is working, you can ping
1610 the address 10.0.2.2 and verify that you got an address in the range
1611 10.0.2.x from the QEMU virtual DHCP server.
1612
1613 Note that @code{ping} is not supported reliably to the internet as it
1614 would require root privileges. It means you can only ping the local
1615 router (10.0.2.2).
1616
1617 When using the built-in TFTP server, the router is also the TFTP
1618 server.
1619
1620 When using the @option{-redir} option, TCP or UDP connections can be
1621 redirected from the host to the guest. It allows for example to
1622 redirect X11, telnet or SSH connections.
1623
1624 @subsection Connecting VLANs between QEMU instances
1625
1626 Using the @option{-net socket} option, it is possible to make VLANs
1627 that span several QEMU instances. See @ref{sec_invocation} to have a
1628 basic example.
1629
1630 @node direct_linux_boot
1631 @section Direct Linux Boot
1632
1633 This section explains how to launch a Linux kernel inside QEMU without
1634 having to make a full bootable image. It is very useful for fast Linux
1635 kernel testing.
1636
1637 The syntax is:
1638 @example
1639 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1640 @end example
1641
1642 Use @option{-kernel} to provide the Linux kernel image and
1643 @option{-append} to give the kernel command line arguments. The
1644 @option{-initrd} option can be used to provide an INITRD image.
1645
1646 When using the direct Linux boot, a disk image for the first hard disk
1647 @file{hda} is required because its boot sector is used to launch the
1648 Linux kernel.
1649
1650 If you do not need graphical output, you can disable it and redirect
1651 the virtual serial port and the QEMU monitor to the console with the
1652 @option{-nographic} option. The typical command line is:
1653 @example
1654 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1655      -append "root=/dev/hda console=ttyS0" -nographic
1656 @end example
1657
1658 Use @key{Ctrl-a c} to switch between the serial console and the
1659 monitor (@pxref{pcsys_keys}).
1660
1661 @node pcsys_usb
1662 @section USB emulation
1663
1664 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1665 virtual USB devices or real host USB devices (experimental, works only
1666 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1667 as necessary to connect multiple USB devices.
1668
1669 @menu
1670 * usb_devices::
1671 * host_usb_devices::
1672 @end menu
1673 @node usb_devices
1674 @subsection Connecting USB devices
1675
1676 USB devices can be connected with the @option{-usbdevice} commandline option
1677 or the @code{usb_add} monitor command.  Available devices are:
1678
1679 @table @code
1680 @item mouse
1681 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1682 @item tablet
1683 Pointer device that uses absolute coordinates (like a touchscreen).
1684 This means qemu is able to report the mouse position without having
1685 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1686 @item disk:@var{file}
1687 Mass storage device based on @var{file} (@pxref{disk_images})
1688 @item host:@var{bus.addr}
1689 Pass through the host device identified by @var{bus.addr}
1690 (Linux only)
1691 @item host:@var{vendor_id:product_id}
1692 Pass through the host device identified by @var{vendor_id:product_id}
1693 (Linux only)
1694 @item wacom-tablet
1695 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1696 above but it can be used with the tslib library because in addition to touch
1697 coordinates it reports touch pressure.
1698 @item keyboard
1699 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1700 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1701 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1702 device @var{dev}. The available character devices are the same as for the
1703 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1704 used to override the default 0403:6001. For instance, 
1705 @example
1706 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1707 @end example
1708 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1709 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1710 @item braille
1711 Braille device.  This will use BrlAPI to display the braille output on a real
1712 or fake device.
1713 @item net:@var{nic_num}
1714 Network adapter that supports CDC ethernet and RNDIS protocols.  This must be
1715 used together with the @code{-net nic,model=usb,...} option (see description),
1716 where @var{nic_num} specifies the index of the @code{-net nic,...} option
1717 describing the interface (zero-based).
1718 For instance, user-mode networking can be used by specifying
1719 @example
1720 qemu -net user,vlan=1 -net nic,model=usb,vlan=1 -usbdevice net:0 [...OPTIONS...]
1721 @end example
1722 Currently this cannot be used in machines that support PCI NICs.
1723 @end table
1724
1725 @node host_usb_devices
1726 @subsection Using host USB devices on a Linux host
1727
1728 WARNING: this is an experimental feature. QEMU will slow down when
1729 using it. USB devices requiring real time streaming (i.e. USB Video
1730 Cameras) are not supported yet.
1731
1732 @enumerate
1733 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1734 is actually using the USB device. A simple way to do that is simply to
1735 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1736 to @file{mydriver.o.disabled}.
1737
1738 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1739 @example
1740 ls /proc/bus/usb
1741 001  devices  drivers
1742 @end example
1743
1744 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1745 @example
1746 chown -R myuid /proc/bus/usb
1747 @end example
1748
1749 @item Launch QEMU and do in the monitor:
1750 @example
1751 info usbhost
1752   Device 1.2, speed 480 Mb/s
1753     Class 00: USB device 1234:5678, USB DISK
1754 @end example
1755 You should see the list of the devices you can use (Never try to use
1756 hubs, it won't work).
1757
1758 @item Add the device in QEMU by using:
1759 @example
1760 usb_add host:1234:5678
1761 @end example
1762
1763 Normally the guest OS should report that a new USB device is
1764 plugged. You can use the option @option{-usbdevice} to do the same.
1765
1766 @item Now you can try to use the host USB device in QEMU.
1767
1768 @end enumerate
1769
1770 When relaunching QEMU, you may have to unplug and plug again the USB
1771 device to make it work again (this is a bug).
1772
1773 @node vnc_security
1774 @section VNC security
1775
1776 The VNC server capability provides access to the graphical console
1777 of the guest VM across the network. This has a number of security
1778 considerations depending on the deployment scenarios.
1779
1780 @menu
1781 * vnc_sec_none::
1782 * vnc_sec_password::
1783 * vnc_sec_certificate::
1784 * vnc_sec_certificate_verify::
1785 * vnc_sec_certificate_pw::
1786 * vnc_generate_cert::
1787 @end menu
1788 @node vnc_sec_none
1789 @subsection Without passwords
1790
1791 The simplest VNC server setup does not include any form of authentication.
1792 For this setup it is recommended to restrict it to listen on a UNIX domain
1793 socket only. For example
1794
1795 @example
1796 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1797 @end example
1798
1799 This ensures that only users on local box with read/write access to that
1800 path can access the VNC server. To securely access the VNC server from a
1801 remote machine, a combination of netcat+ssh can be used to provide a secure
1802 tunnel.
1803
1804 @node vnc_sec_password
1805 @subsection With passwords
1806
1807 The VNC protocol has limited support for password based authentication. Since
1808 the protocol limits passwords to 8 characters it should not be considered
1809 to provide high security. The password can be fairly easily brute-forced by
1810 a client making repeat connections. For this reason, a VNC server using password
1811 authentication should be restricted to only listen on the loopback interface
1812 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1813 option, and then once QEMU is running the password is set with the monitor. Until
1814 the monitor is used to set the password all clients will be rejected.
1815
1816 @example
1817 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1818 (qemu) change vnc password
1819 Password: ********
1820 (qemu)
1821 @end example
1822
1823 @node vnc_sec_certificate
1824 @subsection With x509 certificates
1825
1826 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1827 TLS for encryption of the session, and x509 certificates for authentication.
1828 The use of x509 certificates is strongly recommended, because TLS on its
1829 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1830 support provides a secure session, but no authentication. This allows any
1831 client to connect, and provides an encrypted session.
1832
1833 @example
1834 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1835 @end example
1836
1837 In the above example @code{/etc/pki/qemu} should contain at least three files,
1838 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1839 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1840 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1841 only be readable by the user owning it.
1842
1843 @node vnc_sec_certificate_verify
1844 @subsection With x509 certificates and client verification
1845
1846 Certificates can also provide a means to authenticate the client connecting.
1847 The server will request that the client provide a certificate, which it will
1848 then validate against the CA certificate. This is a good choice if deploying
1849 in an environment with a private internal certificate authority.
1850
1851 @example
1852 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1853 @end example
1854
1855
1856 @node vnc_sec_certificate_pw
1857 @subsection With x509 certificates, client verification and passwords
1858
1859 Finally, the previous method can be combined with VNC password authentication
1860 to provide two layers of authentication for clients.
1861
1862 @example
1863 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1864 (qemu) change vnc password
1865 Password: ********
1866 (qemu)
1867 @end example
1868
1869 @node vnc_generate_cert
1870 @subsection Generating certificates for VNC
1871
1872 The GNU TLS packages provides a command called @code{certtool} which can
1873 be used to generate certificates and keys in PEM format. At a minimum it
1874 is neccessary to setup a certificate authority, and issue certificates to
1875 each server. If using certificates for authentication, then each client
1876 will also need to be issued a certificate. The recommendation is for the
1877 server to keep its certificates in either @code{/etc/pki/qemu} or for
1878 unprivileged users in @code{$HOME/.pki/qemu}.
1879
1880 @menu
1881 * vnc_generate_ca::
1882 * vnc_generate_server::
1883 * vnc_generate_client::
1884 @end menu
1885 @node vnc_generate_ca
1886 @subsubsection Setup the Certificate Authority
1887
1888 This step only needs to be performed once per organization / organizational
1889 unit. First the CA needs a private key. This key must be kept VERY secret
1890 and secure. If this key is compromised the entire trust chain of the certificates
1891 issued with it is lost.
1892
1893 @example
1894 # certtool --generate-privkey > ca-key.pem
1895 @end example
1896
1897 A CA needs to have a public certificate. For simplicity it can be a self-signed
1898 certificate, or one issue by a commercial certificate issuing authority. To
1899 generate a self-signed certificate requires one core piece of information, the
1900 name of the organization.
1901
1902 @example
1903 # cat > ca.info <<EOF
1904 cn = Name of your organization
1905 ca
1906 cert_signing_key
1907 EOF
1908 # certtool --generate-self-signed \
1909            --load-privkey ca-key.pem
1910            --template ca.info \
1911            --outfile ca-cert.pem
1912 @end example
1913
1914 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1915 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1916
1917 @node vnc_generate_server
1918 @subsubsection Issuing server certificates
1919
1920 Each server (or host) needs to be issued with a key and certificate. When connecting
1921 the certificate is sent to the client which validates it against the CA certificate.
1922 The core piece of information for a server certificate is the hostname. This should
1923 be the fully qualified hostname that the client will connect with, since the client
1924 will typically also verify the hostname in the certificate. On the host holding the
1925 secure CA private key:
1926
1927 @example
1928 # cat > server.info <<EOF
1929 organization = Name  of your organization
1930 cn = server.foo.example.com
1931 tls_www_server
1932 encryption_key
1933 signing_key
1934 EOF
1935 # certtool --generate-privkey > server-key.pem
1936 # certtool --generate-certificate \
1937            --load-ca-certificate ca-cert.pem \
1938            --load-ca-privkey ca-key.pem \
1939            --load-privkey server server-key.pem \
1940            --template server.info \
1941            --outfile server-cert.pem
1942 @end example
1943
1944 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1945 to the server for which they were generated. The @code{server-key.pem} is security
1946 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1947
1948 @node vnc_generate_client
1949 @subsubsection Issuing client certificates
1950
1951 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1952 certificates as its authentication mechanism, each client also needs to be issued
1953 a certificate. The client certificate contains enough metadata to uniquely identify
1954 the client, typically organization, state, city, building, etc. On the host holding
1955 the secure CA private key:
1956
1957 @example
1958 # cat > client.info <<EOF
1959 country = GB
1960 state = London
1961 locality = London
1962 organiazation = Name of your organization
1963 cn = client.foo.example.com
1964 tls_www_client
1965 encryption_key
1966 signing_key
1967 EOF
1968 # certtool --generate-privkey > client-key.pem
1969 # certtool --generate-certificate \
1970            --load-ca-certificate ca-cert.pem \
1971            --load-ca-privkey ca-key.pem \
1972            --load-privkey client-key.pem \
1973            --template client.info \
1974            --outfile client-cert.pem
1975 @end example
1976
1977 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1978 copied to the client for which they were generated.
1979
1980 @node gdb_usage
1981 @section GDB usage
1982
1983 QEMU has a primitive support to work with gdb, so that you can do
1984 'Ctrl-C' while the virtual machine is running and inspect its state.
1985
1986 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1987 gdb connection:
1988 @example
1989 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1990        -append "root=/dev/hda"
1991 Connected to host network interface: tun0
1992 Waiting gdb connection on port 1234
1993 @end example
1994
1995 Then launch gdb on the 'vmlinux' executable:
1996 @example
1997 > gdb vmlinux
1998 @end example
1999
2000 In gdb, connect to QEMU:
2001 @example
2002 (gdb) target remote localhost:1234
2003 @end example
2004
2005 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2006 @example
2007 (gdb) c
2008 @end example
2009
2010 Here are some useful tips in order to use gdb on system code:
2011
2012 @enumerate
2013 @item
2014 Use @code{info reg} to display all the CPU registers.
2015 @item
2016 Use @code{x/10i $eip} to display the code at the PC position.
2017 @item
2018 Use @code{set architecture i8086} to dump 16 bit code. Then use
2019 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2020 @end enumerate
2021
2022 Advanced debugging options:
2023
2024 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2025 @table @code
2026 @item maintenance packet qqemu.sstepbits
2027
2028 This will display the MASK bits used to control the single stepping IE:
2029 @example
2030 (gdb) maintenance packet qqemu.sstepbits
2031 sending: "qqemu.sstepbits"
2032 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2033 @end example
2034 @item maintenance packet qqemu.sstep
2035
2036 This will display the current value of the mask used when single stepping IE:
2037 @example
2038 (gdb) maintenance packet qqemu.sstep
2039 sending: "qqemu.sstep"
2040 received: "0x7"
2041 @end example
2042 @item maintenance packet Qqemu.sstep=HEX_VALUE
2043
2044 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2045 @example
2046 (gdb) maintenance packet Qqemu.sstep=0x5
2047 sending: "qemu.sstep=0x5"
2048 received: "OK"
2049 @end example
2050 @end table
2051
2052 @node pcsys_os_specific
2053 @section Target OS specific information
2054
2055 @subsection Linux
2056
2057 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2058 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2059 color depth in the guest and the host OS.
2060
2061 When using a 2.6 guest Linux kernel, you should add the option
2062 @code{clock=pit} on the kernel command line because the 2.6 Linux
2063 kernels make very strict real time clock checks by default that QEMU
2064 cannot simulate exactly.
2065
2066 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2067 not activated because QEMU is slower with this patch. The QEMU
2068 Accelerator Module is also much slower in this case. Earlier Fedora
2069 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2070 patch by default. Newer kernels don't have it.
2071
2072 @subsection Windows
2073
2074 If you have a slow host, using Windows 95 is better as it gives the
2075 best speed. Windows 2000 is also a good choice.
2076
2077 @subsubsection SVGA graphic modes support
2078
2079 QEMU emulates a Cirrus Logic GD5446 Video
2080 card. All Windows versions starting from Windows 95 should recognize
2081 and use this graphic card. For optimal performances, use 16 bit color
2082 depth in the guest and the host OS.
2083
2084 If you are using Windows XP as guest OS and if you want to use high
2085 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2086 1280x1024x16), then you should use the VESA VBE virtual graphic card
2087 (option @option{-std-vga}).
2088
2089 @subsubsection CPU usage reduction
2090
2091 Windows 9x does not correctly use the CPU HLT
2092 instruction. The result is that it takes host CPU cycles even when
2093 idle. You can install the utility from
2094 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2095 problem. Note that no such tool is needed for NT, 2000 or XP.
2096
2097 @subsubsection Windows 2000 disk full problem
2098
2099 Windows 2000 has a bug which gives a disk full problem during its
2100 installation. When installing it, use the @option{-win2k-hack} QEMU
2101 option to enable a specific workaround. After Windows 2000 is
2102 installed, you no longer need this option (this option slows down the
2103 IDE transfers).
2104
2105 @subsubsection Windows 2000 shutdown
2106
2107 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2108 can. It comes from the fact that Windows 2000 does not automatically
2109 use the APM driver provided by the BIOS.
2110
2111 In order to correct that, do the following (thanks to Struan
2112 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2113 Add/Troubleshoot a device => Add a new device & Next => No, select the
2114 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2115 (again) a few times. Now the driver is installed and Windows 2000 now
2116 correctly instructs QEMU to shutdown at the appropriate moment.
2117
2118 @subsubsection Share a directory between Unix and Windows
2119
2120 See @ref{sec_invocation} about the help of the option @option{-smb}.
2121
2122 @subsubsection Windows XP security problem
2123
2124 Some releases of Windows XP install correctly but give a security
2125 error when booting:
2126 @example
2127 A problem is preventing Windows from accurately checking the
2128 license for this computer. Error code: 0x800703e6.
2129 @end example
2130
2131 The workaround is to install a service pack for XP after a boot in safe
2132 mode. Then reboot, and the problem should go away. Since there is no
2133 network while in safe mode, its recommended to download the full
2134 installation of SP1 or SP2 and transfer that via an ISO or using the
2135 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2136
2137 @subsection MS-DOS and FreeDOS
2138
2139 @subsubsection CPU usage reduction
2140
2141 DOS does not correctly use the CPU HLT instruction. The result is that
2142 it takes host CPU cycles even when idle. You can install the utility
2143 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2144 problem.
2145
2146 @node QEMU System emulator for non PC targets
2147 @chapter QEMU System emulator for non PC targets
2148
2149 QEMU is a generic emulator and it emulates many non PC
2150 machines. Most of the options are similar to the PC emulator. The
2151 differences are mentioned in the following sections.
2152
2153 @menu
2154 * QEMU PowerPC System emulator::
2155 * Sparc32 System emulator::
2156 * Sparc64 System emulator::
2157 * MIPS System emulator::
2158 * ARM System emulator::
2159 * ColdFire System emulator::
2160 @end menu
2161
2162 @node QEMU PowerPC System emulator
2163 @section QEMU PowerPC System emulator
2164
2165 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2166 or PowerMac PowerPC system.
2167
2168 QEMU emulates the following PowerMac peripherals:
2169
2170 @itemize @minus
2171 @item
2172 UniNorth PCI Bridge
2173 @item
2174 PCI VGA compatible card with VESA Bochs Extensions
2175 @item
2176 2 PMAC IDE interfaces with hard disk and CD-ROM support
2177 @item
2178 NE2000 PCI adapters
2179 @item
2180 Non Volatile RAM
2181 @item
2182 VIA-CUDA with ADB keyboard and mouse.
2183 @end itemize
2184
2185 QEMU emulates the following PREP peripherals:
2186
2187 @itemize @minus
2188 @item
2189 PCI Bridge
2190 @item
2191 PCI VGA compatible card with VESA Bochs Extensions
2192 @item
2193 2 IDE interfaces with hard disk and CD-ROM support
2194 @item
2195 Floppy disk
2196 @item
2197 NE2000 network adapters
2198 @item
2199 Serial port
2200 @item
2201 PREP Non Volatile RAM
2202 @item
2203 PC compatible keyboard and mouse.
2204 @end itemize
2205
2206 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2207 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2208
2209 @c man begin OPTIONS
2210
2211 The following options are specific to the PowerPC emulation:
2212
2213 @table @option
2214
2215 @item -g WxH[xDEPTH]
2216
2217 Set the initial VGA graphic mode. The default is 800x600x15.
2218
2219 @end table
2220
2221 @c man end
2222
2223
2224 More information is available at
2225 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2226
2227 @node Sparc32 System emulator
2228 @section Sparc32 System emulator
2229
2230 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2231 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2232 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2233 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2234 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2235 of usable CPUs to 4.
2236
2237 QEMU emulates the following sun4m/sun4d peripherals:
2238
2239 @itemize @minus
2240 @item
2241 IOMMU or IO-UNITs
2242 @item
2243 TCX Frame buffer
2244 @item
2245 Lance (Am7990) Ethernet
2246 @item
2247 Non Volatile RAM M48T08
2248 @item
2249 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2250 and power/reset logic
2251 @item
2252 ESP SCSI controller with hard disk and CD-ROM support
2253 @item
2254 Floppy drive (not on SS-600MP)
2255 @item
2256 CS4231 sound device (only on SS-5, not working yet)
2257 @end itemize
2258
2259 The number of peripherals is fixed in the architecture.  Maximum
2260 memory size depends on the machine type, for SS-5 it is 256MB and for
2261 others 2047MB.
2262
2263 Since version 0.8.2, QEMU uses OpenBIOS
2264 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2265 firmware implementation. The goal is to implement a 100% IEEE
2266 1275-1994 (referred to as Open Firmware) compliant firmware.
2267
2268 A sample Linux 2.6 series kernel and ram disk image are available on
2269 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2270 Solaris kernels don't work.
2271
2272 @c man begin OPTIONS
2273
2274 The following options are specific to the Sparc32 emulation:
2275
2276 @table @option
2277
2278 @item -g WxHx[xDEPTH]
2279
2280 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2281 the only other possible mode is 1024x768x24.
2282
2283 @item -prom-env string
2284
2285 Set OpenBIOS variables in NVRAM, for example:
2286
2287 @example
2288 qemu-system-sparc -prom-env 'auto-boot?=false' \
2289  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2290 @end example
2291
2292 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2293
2294 Set the emulated machine type. Default is SS-5.
2295
2296 @end table
2297
2298 @c man end
2299
2300 @node Sparc64 System emulator
2301 @section Sparc64 System emulator
2302
2303 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2304 The emulator is not usable for anything yet.
2305
2306 QEMU emulates the following sun4u peripherals:
2307
2308 @itemize @minus
2309 @item
2310 UltraSparc IIi APB PCI Bridge
2311 @item
2312 PCI VGA compatible card with VESA Bochs Extensions
2313 @item
2314 Non Volatile RAM M48T59
2315 @item
2316 PC-compatible serial ports
2317 @end itemize
2318
2319 @node MIPS System emulator
2320 @section MIPS System emulator
2321
2322 Four executables cover simulation of 32 and 64-bit MIPS systems in
2323 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2324 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2325 Five different machine types are emulated:
2326
2327 @itemize @minus
2328 @item
2329 A generic ISA PC-like machine "mips"
2330 @item
2331 The MIPS Malta prototype board "malta"
2332 @item
2333 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2334 @item
2335 MIPS emulator pseudo board "mipssim"
2336 @item
2337 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2338 @end itemize
2339
2340 The generic emulation is supported by Debian 'Etch' and is able to
2341 install Debian into a virtual disk image. The following devices are
2342 emulated:
2343
2344 @itemize @minus
2345 @item
2346 A range of MIPS CPUs, default is the 24Kf
2347 @item
2348 PC style serial port
2349 @item
2350 PC style IDE disk
2351 @item
2352 NE2000 network card
2353 @end itemize
2354
2355 The Malta emulation supports the following devices:
2356
2357 @itemize @minus
2358 @item
2359 Core board with MIPS 24Kf CPU and Galileo system controller
2360 @item
2361 PIIX4 PCI/USB/SMbus controller
2362 @item
2363 The Multi-I/O chip's serial device
2364 @item
2365 PCnet32 PCI network card
2366 @item
2367 Malta FPGA serial device
2368 @item
2369 Cirrus VGA graphics card
2370 @end itemize
2371
2372 The ACER Pica emulation supports:
2373
2374 @itemize @minus
2375 @item
2376 MIPS R4000 CPU
2377 @item
2378 PC-style IRQ and DMA controllers
2379 @item
2380 PC Keyboard
2381 @item
2382 IDE controller
2383 @end itemize
2384
2385 The mipssim pseudo board emulation provides an environment similiar
2386 to what the proprietary MIPS emulator uses for running Linux.
2387 It supports:
2388
2389 @itemize @minus
2390 @item
2391 A range of MIPS CPUs, default is the 24Kf
2392 @item
2393 PC style serial port
2394 @item
2395 MIPSnet network emulation
2396 @end itemize
2397
2398 The MIPS Magnum R4000 emulation supports:
2399
2400 @itemize @minus
2401 @item
2402 MIPS R4000 CPU
2403 @item
2404 PC-style IRQ controller
2405 @item
2406 PC Keyboard
2407 @item
2408 SCSI controller
2409 @item
2410 G364 framebuffer
2411 @end itemize
2412
2413
2414 @node ARM System emulator
2415 @section ARM System emulator
2416
2417 Use the executable @file{qemu-system-arm} to simulate a ARM
2418 machine. The ARM Integrator/CP board is emulated with the following
2419 devices:
2420
2421 @itemize @minus
2422 @item
2423 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2424 @item
2425 Two PL011 UARTs
2426 @item
2427 SMC 91c111 Ethernet adapter
2428 @item
2429 PL110 LCD controller
2430 @item
2431 PL050 KMI with PS/2 keyboard and mouse.
2432 @item
2433 PL181 MultiMedia Card Interface with SD card.
2434 @end itemize
2435
2436 The ARM Versatile baseboard is emulated with the following devices:
2437
2438 @itemize @minus
2439 @item
2440 ARM926E, ARM1136 or Cortex-A8 CPU
2441 @item
2442 PL190 Vectored Interrupt Controller
2443 @item
2444 Four PL011 UARTs
2445 @item
2446 SMC 91c111 Ethernet adapter
2447 @item
2448 PL110 LCD controller
2449 @item
2450 PL050 KMI with PS/2 keyboard and mouse.
2451 @item
2452 PCI host bridge.  Note the emulated PCI bridge only provides access to
2453 PCI memory space.  It does not provide access to PCI IO space.
2454 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2455 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2456 mapped control registers.
2457 @item
2458 PCI OHCI USB controller.
2459 @item
2460 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2461 @item
2462 PL181 MultiMedia Card Interface with SD card.
2463 @end itemize
2464
2465 The ARM RealView Emulation baseboard is emulated with the following devices:
2466
2467 @itemize @minus
2468 @item
2469 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2470 @item
2471 ARM AMBA Generic/Distributed Interrupt Controller
2472 @item
2473 Four PL011 UARTs
2474 @item
2475 SMC 91c111 Ethernet adapter
2476 @item
2477 PL110 LCD controller
2478 @item
2479 PL050 KMI with PS/2 keyboard and mouse
2480 @item
2481 PCI host bridge
2482 @item
2483 PCI OHCI USB controller
2484 @item
2485 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2486 @item
2487 PL181 MultiMedia Card Interface with SD card.
2488 @end itemize
2489
2490 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2491 and "Terrier") emulation includes the following peripherals:
2492
2493 @itemize @minus
2494 @item
2495 Intel PXA270 System-on-chip (ARM V5TE core)
2496 @item
2497 NAND Flash memory
2498 @item
2499 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2500 @item
2501 On-chip OHCI USB controller
2502 @item
2503 On-chip LCD controller
2504 @item
2505 On-chip Real Time Clock
2506 @item
2507 TI ADS7846 touchscreen controller on SSP bus
2508 @item
2509 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2510 @item
2511 GPIO-connected keyboard controller and LEDs
2512 @item
2513 Secure Digital card connected to PXA MMC/SD host
2514 @item
2515 Three on-chip UARTs
2516 @item
2517 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2518 @end itemize
2519
2520 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2521 following elements:
2522
2523 @itemize @minus
2524 @item
2525 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2526 @item
2527 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2528 @item
2529 On-chip LCD controller
2530 @item
2531 On-chip Real Time Clock
2532 @item
2533 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2534 CODEC, connected through MicroWire and I@math{^2}S busses
2535 @item
2536 GPIO-connected matrix keypad
2537 @item
2538 Secure Digital card connected to OMAP MMC/SD host
2539 @item
2540 Three on-chip UARTs
2541 @end itemize
2542
2543 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2544 emulation supports the following elements:
2545
2546 @itemize @minus
2547 @item
2548 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2549 @item
2550 RAM and non-volatile OneNAND Flash memories
2551 @item
2552 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2553 display controller and a LS041y3 MIPI DBI-C controller
2554 @item
2555 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2556 driven through SPI bus
2557 @item
2558 National Semiconductor LM8323-controlled qwerty keyboard driven
2559 through I@math{^2}C bus
2560 @item
2561 Secure Digital card connected to OMAP MMC/SD host
2562 @item
2563 Three OMAP on-chip UARTs and on-chip STI debugging console
2564 @item
2565 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2566 TUSB6010 chip - only USB host mode is supported
2567 @item
2568 TI TMP105 temperature sensor driven through I@math{^2}C bus
2569 @item
2570 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2571 @item
2572 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2573 through CBUS
2574 @end itemize
2575
2576 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2577 devices:
2578
2579 @itemize @minus
2580 @item
2581 Cortex-M3 CPU core.
2582 @item
2583 64k Flash and 8k SRAM.
2584 @item
2585 Timers, UARTs, ADC and I@math{^2}C interface.
2586 @item
2587 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2588 @end itemize
2589
2590 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2591 devices:
2592
2593 @itemize @minus
2594 @item
2595 Cortex-M3 CPU core.
2596 @item
2597 256k Flash and 64k SRAM.
2598 @item
2599 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2600 @item
2601 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2602 @end itemize
2603
2604 The Freecom MusicPal internet radio emulation includes the following
2605 elements:
2606
2607 @itemize @minus
2608 @item
2609 Marvell MV88W8618 ARM core.
2610 @item
2611 32 MB RAM, 256 KB SRAM, 8 MB flash.
2612 @item
2613 Up to 2 16550 UARTs
2614 @item
2615 MV88W8xx8 Ethernet controller
2616 @item
2617 MV88W8618 audio controller, WM8750 CODEC and mixer
2618 @item
2619 128×64 display with brightness control
2620 @item
2621 2 buttons, 2 navigation wheels with button function
2622 @end itemize
2623
2624 A Linux 2.6 test image is available on the QEMU web site. More
2625 information is available in the QEMU mailing-list archive.
2626
2627 @node ColdFire System emulator
2628 @section ColdFire System emulator
2629
2630 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2631 The emulator is able to boot a uClinux kernel.
2632
2633 The M5208EVB emulation includes the following devices:
2634
2635 @itemize @minus
2636 @item
2637 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2638 @item
2639 Three Two on-chip UARTs.
2640 @item
2641 Fast Ethernet Controller (FEC)
2642 @end itemize
2643
2644 The AN5206 emulation includes the following devices:
2645
2646 @itemize @minus
2647 @item
2648 MCF5206 ColdFire V2 Microprocessor.
2649 @item
2650 Two on-chip UARTs.
2651 @end itemize
2652
2653 @node QEMU User space emulator
2654 @chapter QEMU User space emulator
2655
2656 @menu
2657 * Supported Operating Systems ::
2658 * Linux User space emulator::
2659 * Mac OS X/Darwin User space emulator ::
2660 @end menu
2661
2662 @node Supported Operating Systems
2663 @section Supported Operating Systems
2664
2665 The following OS are supported in user space emulation:
2666
2667 @itemize @minus
2668 @item
2669 Linux (referred as qemu-linux-user)
2670 @item
2671 Mac OS X/Darwin (referred as qemu-darwin-user)
2672 @end itemize
2673
2674 @node Linux User space emulator
2675 @section Linux User space emulator
2676
2677 @menu
2678 * Quick Start::
2679 * Wine launch::
2680 * Command line options::
2681 * Other binaries::
2682 @end menu
2683
2684 @node Quick Start
2685 @subsection Quick Start
2686
2687 In order to launch a Linux process, QEMU needs the process executable
2688 itself and all the target (x86) dynamic libraries used by it.
2689
2690 @itemize
2691
2692 @item On x86, you can just try to launch any process by using the native
2693 libraries:
2694
2695 @example
2696 qemu-i386 -L / /bin/ls
2697 @end example
2698
2699 @code{-L /} tells that the x86 dynamic linker must be searched with a
2700 @file{/} prefix.
2701
2702 @item Since QEMU is also a linux process, you can launch qemu with
2703 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2704
2705 @example
2706 qemu-i386 -L / qemu-i386 -L / /bin/ls
2707 @end example
2708
2709 @item On non x86 CPUs, you need first to download at least an x86 glibc
2710 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2711 @code{LD_LIBRARY_PATH} is not set:
2712
2713 @example
2714 unset LD_LIBRARY_PATH
2715 @end example
2716
2717 Then you can launch the precompiled @file{ls} x86 executable:
2718
2719 @example
2720 qemu-i386 tests/i386/ls
2721 @end example
2722 You can look at @file{qemu-binfmt-conf.sh} so that
2723 QEMU is automatically launched by the Linux kernel when you try to
2724 launch x86 executables. It requires the @code{binfmt_misc} module in the
2725 Linux kernel.
2726
2727 @item The x86 version of QEMU is also included. You can try weird things such as:
2728 @example
2729 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2730           /usr/local/qemu-i386/bin/ls-i386
2731 @end example
2732
2733 @end itemize
2734
2735 @node Wine launch
2736 @subsection Wine launch
2737
2738 @itemize
2739
2740 @item Ensure that you have a working QEMU with the x86 glibc
2741 distribution (see previous section). In order to verify it, you must be
2742 able to do:
2743
2744 @example
2745 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2746 @end example
2747
2748 @item Download the binary x86 Wine install
2749 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2750
2751 @item Configure Wine on your account. Look at the provided script
2752 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2753 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2754
2755 @item Then you can try the example @file{putty.exe}:
2756
2757 @example
2758 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2759           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2760 @end example
2761
2762 @end itemize
2763
2764 @node Command line options
2765 @subsection Command line options
2766
2767 @example
2768 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2769 @end example
2770
2771 @table @option
2772 @item -h
2773 Print the help
2774 @item -L path
2775 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2776 @item -s size
2777 Set the x86 stack size in bytes (default=524288)
2778 @end table
2779
2780 Debug options:
2781
2782 @table @option
2783 @item -d
2784 Activate log (logfile=/tmp/qemu.log)
2785 @item -p pagesize
2786 Act as if the host page size was 'pagesize' bytes
2787 @end table
2788
2789 Environment variables:
2790
2791 @table @env
2792 @item QEMU_STRACE
2793 Print system calls and arguments similar to the 'strace' program
2794 (NOTE: the actual 'strace' program will not work because the user
2795 space emulator hasn't implemented ptrace).  At the moment this is
2796 incomplete.  All system calls that don't have a specific argument
2797 format are printed with information for six arguments.  Many
2798 flag-style arguments don't have decoders and will show up as numbers.
2799 @end table
2800
2801 @node Other binaries
2802 @subsection Other binaries
2803
2804 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2805 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2806 configurations), and arm-uclinux bFLT format binaries.
2807
2808 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2809 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2810 coldfire uClinux bFLT format binaries.
2811
2812 The binary format is detected automatically.
2813
2814 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2815 (Sparc64 CPU, 32 bit ABI).
2816
2817 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2818 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2819
2820 @node Mac OS X/Darwin User space emulator
2821 @section Mac OS X/Darwin User space emulator
2822
2823 @menu
2824 * Mac OS X/Darwin Status::
2825 * Mac OS X/Darwin Quick Start::
2826 * Mac OS X/Darwin Command line options::
2827 @end menu
2828
2829 @node Mac OS X/Darwin Status
2830 @subsection Mac OS X/Darwin Status
2831
2832 @itemize @minus
2833 @item
2834 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2835 @item
2836 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2837 @item
2838 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2839 @item
2840 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2841 @end itemize
2842
2843 [1] If you're host commpage can be executed by qemu.
2844
2845 @node Mac OS X/Darwin Quick Start
2846 @subsection Quick Start
2847
2848 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2849 itself and all the target dynamic libraries used by it. If you don't have the FAT
2850 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2851 CD or compile them by hand.
2852
2853 @itemize
2854
2855 @item On x86, you can just try to launch any process by using the native
2856 libraries:
2857
2858 @example
2859 qemu-i386 /bin/ls
2860 @end example
2861
2862 or to run the ppc version of the executable:
2863
2864 @example
2865 qemu-ppc /bin/ls
2866 @end example
2867
2868 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2869 are installed:
2870
2871 @example
2872 qemu-i386 -L /opt/x86_root/ /bin/ls
2873 @end example
2874
2875 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2876 @file{/opt/x86_root/usr/bin/dyld}.
2877
2878 @end itemize
2879
2880 @node Mac OS X/Darwin Command line options
2881 @subsection Command line options
2882
2883 @example
2884 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2885 @end example
2886
2887 @table @option
2888 @item -h
2889 Print the help
2890 @item -L path
2891 Set the library root path (default=/)
2892 @item -s size
2893 Set the stack size in bytes (default=524288)
2894 @end table
2895
2896 Debug options:
2897
2898 @table @option
2899 @item -d
2900 Activate log (logfile=/tmp/qemu.log)
2901 @item -p pagesize
2902 Act as if the host page size was 'pagesize' bytes
2903 @end table
2904
2905 @node compilation
2906 @chapter Compilation from the sources
2907
2908 @menu
2909 * Linux/Unix::
2910 * Windows::
2911 * Cross compilation for Windows with Linux::
2912 * Mac OS X::
2913 @end menu
2914
2915 @node Linux/Unix
2916 @section Linux/Unix
2917
2918 @subsection Compilation
2919
2920 First you must decompress the sources:
2921 @example
2922 cd /tmp
2923 tar zxvf qemu-x.y.z.tar.gz
2924 cd qemu-x.y.z
2925 @end example
2926
2927 Then you configure QEMU and build it (usually no options are needed):
2928 @example
2929 ./configure
2930 make
2931 @end example
2932
2933 Then type as root user:
2934 @example
2935 make install
2936 @end example
2937 to install QEMU in @file{/usr/local}.
2938
2939 @subsection GCC version
2940
2941 In order to compile QEMU successfully, it is very important that you
2942 have the right tools. The most important one is gcc. On most hosts and
2943 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2944 Linux distribution includes a gcc 4.x compiler, you can usually
2945 install an older version (it is invoked by @code{gcc32} or
2946 @code{gcc34}). The QEMU configure script automatically probes for
2947 these older versions so that usually you don't have to do anything.
2948
2949 @node Windows
2950 @section Windows
2951
2952 @itemize
2953 @item Install the current versions of MSYS and MinGW from
2954 @url{http://www.mingw.org/}. You can find detailed installation
2955 instructions in the download section and the FAQ.
2956
2957 @item Download
2958 the MinGW development library of SDL 1.2.x
2959 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2960 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2961 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2962 directory. Edit the @file{sdl-config} script so that it gives the
2963 correct SDL directory when invoked.
2964
2965 @item Extract the current version of QEMU.
2966
2967 @item Start the MSYS shell (file @file{msys.bat}).
2968
2969 @item Change to the QEMU directory. Launch @file{./configure} and
2970 @file{make}.  If you have problems using SDL, verify that
2971 @file{sdl-config} can be launched from the MSYS command line.
2972
2973 @item You can install QEMU in @file{Program Files/Qemu} by typing
2974 @file{make install}. Don't forget to copy @file{SDL.dll} in
2975 @file{Program Files/Qemu}.
2976
2977 @end itemize
2978
2979 @node Cross compilation for Windows with Linux
2980 @section Cross compilation for Windows with Linux
2981
2982 @itemize
2983 @item
2984 Install the MinGW cross compilation tools available at
2985 @url{http://www.mingw.org/}.
2986
2987 @item
2988 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2989 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2990 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2991 the QEMU configuration script.
2992
2993 @item
2994 Configure QEMU for Windows cross compilation:
2995 @example
2996 ./configure --enable-mingw32
2997 @end example
2998 If necessary, you can change the cross-prefix according to the prefix
2999 chosen for the MinGW tools with --cross-prefix. You can also use
3000 --prefix to set the Win32 install path.
3001
3002 @item You can install QEMU in the installation directory by typing
3003 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3004 installation directory.
3005
3006 @end itemize
3007
3008 Note: Currently, Wine does not seem able to launch
3009 QEMU for Win32.
3010
3011 @node Mac OS X
3012 @section Mac OS X
3013
3014 The Mac OS X patches are not fully merged in QEMU, so you should look
3015 at the QEMU mailing list archive to have all the necessary
3016 information.
3017
3018 @node Index
3019 @chapter Index
3020 @printindex cp
3021
3022 @bye