Gravis Ultrasound GF1 sound card emulation (malc).
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item ARM Integrator/CP (ARM)
81 @item ARM Versatile baseboard (ARM)
82 @item ARM RealView Emulation baseboard (ARM)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86 @item Freescale MCF5208EVB (ColdFire V2).
87 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
88 @item Palm Tungsten|E PDA (OMAP310 processor)
89 @end itemize
90
91 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93 @node Installation
94 @chapter Installation
95
96 If you want to compile QEMU yourself, see @ref{compilation}.
97
98 @menu
99 * install_linux::   Linux
100 * install_windows:: Windows
101 * install_mac::     Macintosh
102 @end menu
103
104 @node install_linux
105 @section Linux
106
107 If a precompiled package is available for your distribution - you just
108 have to install it. Otherwise, see @ref{compilation}.
109
110 @node install_windows
111 @section Windows
112
113 Download the experimental binary installer at
114 @url{http://www.free.oszoo.org/@/download.html}.
115
116 @node install_mac
117 @section Mac OS X
118
119 Download the experimental binary installer at
120 @url{http://www.free.oszoo.org/@/download.html}.
121
122 @node QEMU PC System emulator
123 @chapter QEMU PC System emulator
124
125 @menu
126 * pcsys_introduction:: Introduction
127 * pcsys_quickstart::   Quick Start
128 * sec_invocation::     Invocation
129 * pcsys_keys::         Keys
130 * pcsys_monitor::      QEMU Monitor
131 * disk_images::        Disk Images
132 * pcsys_network::      Network emulation
133 * direct_linux_boot::  Direct Linux Boot
134 * pcsys_usb::          USB emulation
135 * vnc_security::       VNC security
136 * gdb_usage::          GDB usage
137 * pcsys_os_specific::  Target OS specific information
138 @end menu
139
140 @node pcsys_introduction
141 @section Introduction
142
143 @c man begin DESCRIPTION
144
145 The QEMU PC System emulator simulates the
146 following peripherals:
147
148 @itemize @minus
149 @item
150 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151 @item
152 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153 extensions (hardware level, including all non standard modes).
154 @item
155 PS/2 mouse and keyboard
156 @item
157 2 PCI IDE interfaces with hard disk and CD-ROM support
158 @item
159 Floppy disk
160 @item
161 PCI/ISA PCI network adapters
162 @item
163 Serial ports
164 @item
165 Creative SoundBlaster 16 sound card
166 @item
167 ENSONIQ AudioPCI ES1370 sound card
168 @item
169 Intel 82801AA AC97 Audio compatible sound card
170 @item
171 Adlib(OPL2) - Yamaha YM3812 compatible chip
172 @item
173 PCI UHCI USB controller and a virtual USB hub.
174 @end itemize
175
176 SMP is supported with up to 255 CPUs.
177
178 Note that adlib, ac97 and gus are only available when QEMU was configured
179 with --enable-adlib, --enable-ac97 or --enable-gus respectively.
180
181 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
182 VGA BIOS.
183
184 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
185
186 QEMU uses GUS emulation(GUSEMU32) by Tibor "TS" Schütz.
187
188 @c man end
189
190 @node pcsys_quickstart
191 @section Quick Start
192
193 Download and uncompress the linux image (@file{linux.img}) and type:
194
195 @example
196 qemu linux.img
197 @end example
198
199 Linux should boot and give you a prompt.
200
201 @node sec_invocation
202 @section Invocation
203
204 @example
205 @c man begin SYNOPSIS
206 usage: qemu [options] [@var{disk_image}]
207 @c man end
208 @end example
209
210 @c man begin OPTIONS
211 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
212
213 General options:
214 @table @option
215 @item -M @var{machine}
216 Select the emulated @var{machine} (@code{-M ?} for list)
217
218 @item -fda @var{file}
219 @item -fdb @var{file}
220 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
221 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
222
223 @item -hda @var{file}
224 @item -hdb @var{file}
225 @item -hdc @var{file}
226 @item -hdd @var{file}
227 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
228
229 @item -cdrom @var{file}
230 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
231 @option{-cdrom} at the same time). You can use the host CD-ROM by
232 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
233
234 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
235
236 Define a new drive. Valid options are:
237
238 @table @code
239 @item file=@var{file}
240 This option defines which disk image (@pxref{disk_images}) to use with
241 this drive. If the filename contains comma, you must double it
242 (for instance, "file=my,,file" to use file "my,file").
243 @item if=@var{interface}
244 This option defines on which type on interface the drive is connected.
245 Available types are: ide, scsi, sd, mtd, floppy, pflash.
246 @item bus=@var{bus},unit=@var{unit}
247 These options define where is connected the drive by defining the bus number and
248 the unit id.
249 @item index=@var{index}
250 This option defines where is connected the drive by using an index in the list
251 of available connectors of a given interface type.
252 @item media=@var{media}
253 This option defines the type of the media: disk or cdrom.
254 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
255 These options have the same definition as they have in @option{-hdachs}.
256 @item snapshot=@var{snapshot}
257 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
258 @item cache=@var{cache}
259 @var{cache} is "on" or "off" and allows to disable host cache to access data.
260 @end table
261
262 Instead of @option{-cdrom} you can use:
263 @example
264 qemu -drive file=file,index=2,media=cdrom
265 @end example
266
267 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
268 use:
269 @example
270 qemu -drive file=file,index=0,media=disk
271 qemu -drive file=file,index=1,media=disk
272 qemu -drive file=file,index=2,media=disk
273 qemu -drive file=file,index=3,media=disk
274 @end example
275
276 You can connect a CDROM to the slave of ide0:
277 @example
278 qemu -drive file=file,if=ide,index=1,media=cdrom
279 @end example
280
281 If you don't specify the "file=" argument, you define an empty drive:
282 @example
283 qemu -drive if=ide,index=1,media=cdrom
284 @end example
285
286 You can connect a SCSI disk with unit ID 6 on the bus #0:
287 @example
288 qemu -drive file=file,if=scsi,bus=0,unit=6
289 @end example
290
291 Instead of @option{-fda}, @option{-fdb}, you can use:
292 @example
293 qemu -drive file=file,index=0,if=floppy
294 qemu -drive file=file,index=1,if=floppy
295 @end example
296
297 By default, @var{interface} is "ide" and @var{index} is automatically
298 incremented:
299 @example
300 qemu -drive file=a -drive file=b"
301 @end example
302 is interpreted like:
303 @example
304 qemu -hda a -hdb b
305 @end example
306
307 @item -boot [a|c|d|n]
308 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
309 is the default.
310
311 @item -snapshot
312 Write to temporary files instead of disk image files. In this case,
313 the raw disk image you use is not written back. You can however force
314 the write back by pressing @key{C-a s} (@pxref{disk_images}).
315
316 @item -no-fd-bootchk
317 Disable boot signature checking for floppy disks in Bochs BIOS. It may
318 be needed to boot from old floppy disks.
319
320 @item -m @var{megs}
321 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
322
323 @item -smp @var{n}
324 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
325 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
326 to 4.
327
328 @item -audio-help
329
330 Will show the audio subsystem help: list of drivers, tunable
331 parameters.
332
333 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
334
335 Enable audio and selected sound hardware. Use ? to print all
336 available sound hardware.
337
338 @example
339 qemu -soundhw sb16,adlib hda
340 qemu -soundhw es1370 hda
341 qemu -soundhw ac97 hda
342 qemu -soundhw all hda
343 qemu -soundhw ?
344 @end example
345
346 Note that Linux's i810_audio OSS kernel (for AC97) module might
347 require manually specifying clocking.
348
349 @example
350 modprobe i810_audio clocking=48000
351 @end example
352
353 @item -localtime
354 Set the real time clock to local time (the default is to UTC
355 time). This option is needed to have correct date in MS-DOS or
356 Windows.
357
358 @item -startdate @var{date}
359 Set the initial date of the real time clock. Valid format for
360 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
361 @code{2006-06-17}. The default value is @code{now}.
362
363 @item -pidfile @var{file}
364 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
365 from a script.
366
367 @item -daemonize
368 Daemonize the QEMU process after initialization.  QEMU will not detach from
369 standard IO until it is ready to receive connections on any of its devices.
370 This option is a useful way for external programs to launch QEMU without having
371 to cope with initialization race conditions.
372
373 @item -win2k-hack
374 Use it when installing Windows 2000 to avoid a disk full bug. After
375 Windows 2000 is installed, you no longer need this option (this option
376 slows down the IDE transfers).
377
378 @item -option-rom @var{file}
379 Load the contents of @var{file} as an option ROM.
380 This option is useful to load things like EtherBoot.
381
382 @item -name @var{name}
383 Sets the @var{name} of the guest.
384 This name will be display in the SDL window caption.
385 The @var{name} will also be used for the VNC server.
386
387 @end table
388
389 Display options:
390 @table @option
391
392 @item -nographic
393
394 Normally, QEMU uses SDL to display the VGA output. With this option,
395 you can totally disable graphical output so that QEMU is a simple
396 command line application. The emulated serial port is redirected on
397 the console. Therefore, you can still use QEMU to debug a Linux kernel
398 with a serial console.
399
400 @item -no-frame
401
402 Do not use decorations for SDL windows and start them using the whole
403 available screen space. This makes the using QEMU in a dedicated desktop
404 workspace more convenient.
405
406 @item -full-screen
407 Start in full screen.
408
409 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
410
411 Normally, QEMU uses SDL to display the VGA output.  With this option,
412 you can have QEMU listen on VNC display @var{display} and redirect the VGA
413 display over the VNC session.  It is very useful to enable the usb
414 tablet device when using this option (option @option{-usbdevice
415 tablet}). When using the VNC display, you must use the @option{-k}
416 parameter to set the keyboard layout if you are not using en-us. Valid
417 syntax for the @var{display} is
418
419 @table @code
420
421 @item @var{interface}:@var{d}
422
423 TCP connections will only be allowed from @var{interface} on display @var{d}.
424 By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
425 be omitted in which case the server will bind to all interfaces.
426
427 @item @var{unix}:@var{path}
428
429 Connections will be allowed over UNIX domain sockets where @var{path} is the
430 location of a unix socket to listen for connections on.
431
432 @item none
433
434 VNC is initialized by not started. The monitor @code{change} command can be used
435 to later start the VNC server.
436
437 @end table
438
439 Following the @var{display} value there may be one or more @var{option} flags
440 separated by commas. Valid options are
441
442 @table @code
443
444 @item password
445
446 Require that password based authentication is used for client connections.
447 The password must be set separately using the @code{change} command in the
448 @ref{pcsys_monitor}
449
450 @item tls
451
452 Require that client use TLS when communicating with the VNC server. This
453 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
454 attack. It is recommended that this option be combined with either the
455 @var{x509} or @var{x509verify} options.
456
457 @item x509=@var{/path/to/certificate/dir}
458
459 Valid if @option{tls} is specified. Require that x509 credentials are used
460 for negotiating the TLS session. The server will send its x509 certificate
461 to the client. It is recommended that a password be set on the VNC server
462 to provide authentication of the client when this is used. The path following
463 this option specifies where the x509 certificates are to be loaded from.
464 See the @ref{vnc_security} section for details on generating certificates.
465
466 @item x509verify=@var{/path/to/certificate/dir}
467
468 Valid if @option{tls} is specified. Require that x509 credentials are used
469 for negotiating the TLS session. The server will send its x509 certificate
470 to the client, and request that the client send its own x509 certificate.
471 The server will validate the client's certificate against the CA certificate,
472 and reject clients when validation fails. If the certificate authority is
473 trusted, this is a sufficient authentication mechanism. You may still wish
474 to set a password on the VNC server as a second authentication layer. The
475 path following this option specifies where the x509 certificates are to
476 be loaded from. See the @ref{vnc_security} section for details on generating
477 certificates.
478
479 @end table
480
481 @item -k @var{language}
482
483 Use keyboard layout @var{language} (for example @code{fr} for
484 French). This option is only needed where it is not easy to get raw PC
485 keycodes (e.g. on Macs, with some X11 servers or with a VNC
486 display). You don't normally need to use it on PC/Linux or PC/Windows
487 hosts.
488
489 The available layouts are:
490 @example
491 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
492 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
493 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
494 @end example
495
496 The default is @code{en-us}.
497
498 @end table
499
500 USB options:
501 @table @option
502
503 @item -usb
504 Enable the USB driver (will be the default soon)
505
506 @item -usbdevice @var{devname}
507 Add the USB device @var{devname}. @xref{usb_devices}.
508
509 @table @code
510
511 @item mouse
512 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
513
514 @item tablet
515 Pointer device that uses absolute coordinates (like a touchscreen). This
516 means qemu is able to report the mouse position without having to grab the
517 mouse. Also overrides the PS/2 mouse emulation when activated.
518
519 @item disk:file
520 Mass storage device based on file
521
522 @item host:bus.addr
523 Pass through the host device identified by bus.addr (Linux only).
524
525 @item host:vendor_id:product_id
526 Pass through the host device identified by vendor_id:product_id (Linux only).
527
528 @end table
529
530 @end table
531
532 Network options:
533
534 @table @option
535
536 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
537 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
538 = 0 is the default). The NIC is an ne2k_pci by default on the PC
539 target. Optionally, the MAC address can be changed. If no
540 @option{-net} option is specified, a single NIC is created.
541 Qemu can emulate several different models of network card.
542 Valid values for @var{type} are
543 @code{i82551}, @code{i82557b}, @code{i82559er},
544 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
545 @code{smc91c111}, @code{lance} and @code{mcf_fec}.
546 Not all devices are supported on all targets.  Use -net nic,model=?
547 for a list of available devices for your target.
548
549 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
550 Use the user mode network stack which requires no administrator
551 privilege to run.  @option{hostname=name} can be used to specify the client
552 hostname reported by the builtin DHCP server.
553
554 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
555 Connect the host TAP network interface @var{name} to VLAN @var{n} and
556 use the network script @var{file} to configure it. The default
557 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
558 disable script execution. If @var{name} is not
559 provided, the OS automatically provides one. @option{fd}=@var{h} can be
560 used to specify the handle of an already opened host TAP interface. Example:
561
562 @example
563 qemu linux.img -net nic -net tap
564 @end example
565
566 More complicated example (two NICs, each one connected to a TAP device)
567 @example
568 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
569                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
570 @end example
571
572
573 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
574
575 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
576 machine using a TCP socket connection. If @option{listen} is
577 specified, QEMU waits for incoming connections on @var{port}
578 (@var{host} is optional). @option{connect} is used to connect to
579 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
580 specifies an already opened TCP socket.
581
582 Example:
583 @example
584 # launch a first QEMU instance
585 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
586                -net socket,listen=:1234
587 # connect the VLAN 0 of this instance to the VLAN 0
588 # of the first instance
589 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
590                -net socket,connect=127.0.0.1:1234
591 @end example
592
593 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
594
595 Create a VLAN @var{n} shared with another QEMU virtual
596 machines using a UDP multicast socket, effectively making a bus for
597 every QEMU with same multicast address @var{maddr} and @var{port}.
598 NOTES:
599 @enumerate
600 @item
601 Several QEMU can be running on different hosts and share same bus (assuming
602 correct multicast setup for these hosts).
603 @item
604 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
605 @url{http://user-mode-linux.sf.net}.
606 @item
607 Use @option{fd=h} to specify an already opened UDP multicast socket.
608 @end enumerate
609
610 Example:
611 @example
612 # launch one QEMU instance
613 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
614                -net socket,mcast=230.0.0.1:1234
615 # launch another QEMU instance on same "bus"
616 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
617                -net socket,mcast=230.0.0.1:1234
618 # launch yet another QEMU instance on same "bus"
619 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
620                -net socket,mcast=230.0.0.1:1234
621 @end example
622
623 Example (User Mode Linux compat.):
624 @example
625 # launch QEMU instance (note mcast address selected
626 # is UML's default)
627 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628                -net socket,mcast=239.192.168.1:1102
629 # launch UML
630 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
631 @end example
632
633 @item -net none
634 Indicate that no network devices should be configured. It is used to
635 override the default configuration (@option{-net nic -net user}) which
636 is activated if no @option{-net} options are provided.
637
638 @item -tftp @var{dir}
639 When using the user mode network stack, activate a built-in TFTP
640 server. The files in @var{dir} will be exposed as the root of a TFTP server.
641 The TFTP client on the guest must be configured in binary mode (use the command
642 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
643 usual 10.0.2.2.
644
645 @item -bootp @var{file}
646 When using the user mode network stack, broadcast @var{file} as the BOOTP
647 filename.  In conjunction with @option{-tftp}, this can be used to network boot
648 a guest from a local directory.
649
650 Example (using pxelinux):
651 @example
652 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
653 @end example
654
655 @item -smb @var{dir}
656 When using the user mode network stack, activate a built-in SMB
657 server so that Windows OSes can access to the host files in @file{@var{dir}}
658 transparently.
659
660 In the guest Windows OS, the line:
661 @example
662 10.0.2.4 smbserver
663 @end example
664 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
665 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
666
667 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
668
669 Note that a SAMBA server must be installed on the host OS in
670 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
671 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
672
673 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
674
675 When using the user mode network stack, redirect incoming TCP or UDP
676 connections to the host port @var{host-port} to the guest
677 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
678 is not specified, its value is 10.0.2.15 (default address given by the
679 built-in DHCP server).
680
681 For example, to redirect host X11 connection from screen 1 to guest
682 screen 0, use the following:
683
684 @example
685 # on the host
686 qemu -redir tcp:6001::6000 [...]
687 # this host xterm should open in the guest X11 server
688 xterm -display :1
689 @end example
690
691 To redirect telnet connections from host port 5555 to telnet port on
692 the guest, use the following:
693
694 @example
695 # on the host
696 qemu -redir tcp:5555::23 [...]
697 telnet localhost 5555
698 @end example
699
700 Then when you use on the host @code{telnet localhost 5555}, you
701 connect to the guest telnet server.
702
703 @end table
704
705 Linux boot specific: When using these options, you can use a given
706 Linux kernel without installing it in the disk image. It can be useful
707 for easier testing of various kernels.
708
709 @table @option
710
711 @item -kernel @var{bzImage}
712 Use @var{bzImage} as kernel image.
713
714 @item -append @var{cmdline}
715 Use @var{cmdline} as kernel command line
716
717 @item -initrd @var{file}
718 Use @var{file} as initial ram disk.
719
720 @end table
721
722 Debug/Expert options:
723 @table @option
724
725 @item -serial @var{dev}
726 Redirect the virtual serial port to host character device
727 @var{dev}. The default device is @code{vc} in graphical mode and
728 @code{stdio} in non graphical mode.
729
730 This option can be used several times to simulate up to 4 serials
731 ports.
732
733 Use @code{-serial none} to disable all serial ports.
734
735 Available character devices are:
736 @table @code
737 @item vc[:WxH]
738 Virtual console. Optionally, a width and height can be given in pixel with
739 @example
740 vc:800x600
741 @end example
742 It is also possible to specify width or height in characters:
743 @example
744 vc:80Cx24C
745 @end example
746 @item pty
747 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
748 @item none
749 No device is allocated.
750 @item null
751 void device
752 @item /dev/XXX
753 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
754 parameters are set according to the emulated ones.
755 @item /dev/parport@var{N}
756 [Linux only, parallel port only] Use host parallel port
757 @var{N}. Currently SPP and EPP parallel port features can be used.
758 @item file:@var{filename}
759 Write output to @var{filename}. No character can be read.
760 @item stdio
761 [Unix only] standard input/output
762 @item pipe:@var{filename}
763 name pipe @var{filename}
764 @item COM@var{n}
765 [Windows only] Use host serial port @var{n}
766 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
767 This implements UDP Net Console.
768 When @var{remote_host} or @var{src_ip} are not specified
769 they default to @code{0.0.0.0}.
770 When not using a specified @var{src_port} a random port is automatically chosen.
771
772 If you just want a simple readonly console you can use @code{netcat} or
773 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
774 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
775 will appear in the netconsole session.
776
777 If you plan to send characters back via netconsole or you want to stop
778 and start qemu a lot of times, you should have qemu use the same
779 source port each time by using something like @code{-serial
780 udp::4555@@:4556} to qemu. Another approach is to use a patched
781 version of netcat which can listen to a TCP port and send and receive
782 characters via udp.  If you have a patched version of netcat which
783 activates telnet remote echo and single char transfer, then you can
784 use the following options to step up a netcat redirector to allow
785 telnet on port 5555 to access the qemu port.
786 @table @code
787 @item Qemu Options:
788 -serial udp::4555@@:4556
789 @item netcat options:
790 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
791 @item telnet options:
792 localhost 5555
793 @end table
794
795
796 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
797 The TCP Net Console has two modes of operation.  It can send the serial
798 I/O to a location or wait for a connection from a location.  By default
799 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
800 the @var{server} option QEMU will wait for a client socket application
801 to connect to the port before continuing, unless the @code{nowait}
802 option was specified.  The @code{nodelay} option disables the Nagle buffering
803 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
804 one TCP connection at a time is accepted. You can use @code{telnet} to
805 connect to the corresponding character device.
806 @table @code
807 @item Example to send tcp console to 192.168.0.2 port 4444
808 -serial tcp:192.168.0.2:4444
809 @item Example to listen and wait on port 4444 for connection
810 -serial tcp::4444,server
811 @item Example to not wait and listen on ip 192.168.0.100 port 4444
812 -serial tcp:192.168.0.100:4444,server,nowait
813 @end table
814
815 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
816 The telnet protocol is used instead of raw tcp sockets.  The options
817 work the same as if you had specified @code{-serial tcp}.  The
818 difference is that the port acts like a telnet server or client using
819 telnet option negotiation.  This will also allow you to send the
820 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
821 sequence.  Typically in unix telnet you do it with Control-] and then
822 type "send break" followed by pressing the enter key.
823
824 @item unix:@var{path}[,server][,nowait]
825 A unix domain socket is used instead of a tcp socket.  The option works the
826 same as if you had specified @code{-serial tcp} except the unix domain socket
827 @var{path} is used for connections.
828
829 @item mon:@var{dev_string}
830 This is a special option to allow the monitor to be multiplexed onto
831 another serial port.  The monitor is accessed with key sequence of
832 @key{Control-a} and then pressing @key{c}. See monitor access
833 @ref{pcsys_keys} in the -nographic section for more keys.
834 @var{dev_string} should be any one of the serial devices specified
835 above.  An example to multiplex the monitor onto a telnet server
836 listening on port 4444 would be:
837 @table @code
838 @item -serial mon:telnet::4444,server,nowait
839 @end table
840
841 @end table
842
843 @item -parallel @var{dev}
844 Redirect the virtual parallel port to host device @var{dev} (same
845 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
846 be used to use hardware devices connected on the corresponding host
847 parallel port.
848
849 This option can be used several times to simulate up to 3 parallel
850 ports.
851
852 Use @code{-parallel none} to disable all parallel ports.
853
854 @item -monitor @var{dev}
855 Redirect the monitor to host device @var{dev} (same devices as the
856 serial port).
857 The default device is @code{vc} in graphical mode and @code{stdio} in
858 non graphical mode.
859
860 @item -echr numeric_ascii_value
861 Change the escape character used for switching to the monitor when using
862 monitor and serial sharing.  The default is @code{0x01} when using the
863 @code{-nographic} option.  @code{0x01} is equal to pressing
864 @code{Control-a}.  You can select a different character from the ascii
865 control keys where 1 through 26 map to Control-a through Control-z.  For
866 instance you could use the either of the following to change the escape
867 character to Control-t.
868 @table @code
869 @item -echr 0x14
870 @item -echr 20
871 @end table
872
873 @item -s
874 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
875 @item -p @var{port}
876 Change gdb connection port.  @var{port} can be either a decimal number
877 to specify a TCP port, or a host device (same devices as the serial port).
878 @item -S
879 Do not start CPU at startup (you must type 'c' in the monitor).
880 @item -d
881 Output log in /tmp/qemu.log
882 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
883 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
884 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
885 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
886 all those parameters. This option is useful for old MS-DOS disk
887 images.
888
889 @item -L path
890 Set the directory for the BIOS, VGA BIOS and keymaps.
891
892 @item -std-vga
893 Simulate a standard VGA card with Bochs VBE extensions (default is
894 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
895 VBE extensions (e.g. Windows XP) and if you want to use high
896 resolution modes (>= 1280x1024x16) then you should use this option.
897
898 @item -no-acpi
899 Disable ACPI (Advanced Configuration and Power Interface) support. Use
900 it if your guest OS complains about ACPI problems (PC target machine
901 only).
902
903 @item -no-reboot
904 Exit instead of rebooting.
905
906 @item -loadvm file
907 Start right away with a saved state (@code{loadvm} in monitor)
908
909 @item -semihosting
910 Enable semihosting syscall emulation (ARM and M68K target machines only).
911
912 On ARM this implements the "Angel" interface.
913 On M68K this implements the "ColdFire GDB" interface used by libgloss.
914
915 Note that this allows guest direct access to the host filesystem,
916 so should only be used with trusted guest OS.
917 @end table
918
919 @c man end
920
921 @node pcsys_keys
922 @section Keys
923
924 @c man begin OPTIONS
925
926 During the graphical emulation, you can use the following keys:
927 @table @key
928 @item Ctrl-Alt-f
929 Toggle full screen
930
931 @item Ctrl-Alt-n
932 Switch to virtual console 'n'. Standard console mappings are:
933 @table @emph
934 @item 1
935 Target system display
936 @item 2
937 Monitor
938 @item 3
939 Serial port
940 @end table
941
942 @item Ctrl-Alt
943 Toggle mouse and keyboard grab.
944 @end table
945
946 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
947 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
948
949 During emulation, if you are using the @option{-nographic} option, use
950 @key{Ctrl-a h} to get terminal commands:
951
952 @table @key
953 @item Ctrl-a h
954 Print this help
955 @item Ctrl-a x
956 Exit emulator
957 @item Ctrl-a s
958 Save disk data back to file (if -snapshot)
959 @item Ctrl-a t
960 toggle console timestamps
961 @item Ctrl-a b
962 Send break (magic sysrq in Linux)
963 @item Ctrl-a c
964 Switch between console and monitor
965 @item Ctrl-a Ctrl-a
966 Send Ctrl-a
967 @end table
968 @c man end
969
970 @ignore
971
972 @c man begin SEEALSO
973 The HTML documentation of QEMU for more precise information and Linux
974 user mode emulator invocation.
975 @c man end
976
977 @c man begin AUTHOR
978 Fabrice Bellard
979 @c man end
980
981 @end ignore
982
983 @node pcsys_monitor
984 @section QEMU Monitor
985
986 The QEMU monitor is used to give complex commands to the QEMU
987 emulator. You can use it to:
988
989 @itemize @minus
990
991 @item
992 Remove or insert removable media images
993 (such as CD-ROM or floppies).
994
995 @item
996 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
997 from a disk file.
998
999 @item Inspect the VM state without an external debugger.
1000
1001 @end itemize
1002
1003 @subsection Commands
1004
1005 The following commands are available:
1006
1007 @table @option
1008
1009 @item help or ? [@var{cmd}]
1010 Show the help for all commands or just for command @var{cmd}.
1011
1012 @item commit
1013 Commit changes to the disk images (if -snapshot is used).
1014
1015 @item info @var{subcommand}
1016 Show various information about the system state.
1017
1018 @table @option
1019 @item info network
1020 show the various VLANs and the associated devices
1021 @item info block
1022 show the block devices
1023 @item info registers
1024 show the cpu registers
1025 @item info history
1026 show the command line history
1027 @item info pci
1028 show emulated PCI device
1029 @item info usb
1030 show USB devices plugged on the virtual USB hub
1031 @item info usbhost
1032 show all USB host devices
1033 @item info capture
1034 show information about active capturing
1035 @item info snapshots
1036 show list of VM snapshots
1037 @item info mice
1038 show which guest mouse is receiving events
1039 @end table
1040
1041 @item q or quit
1042 Quit the emulator.
1043
1044 @item eject [-f] @var{device}
1045 Eject a removable medium (use -f to force it).
1046
1047 @item change @var{device} @var{setting}
1048
1049 Change the configuration of a device.
1050
1051 @table @option
1052 @item change @var{diskdevice} @var{filename}
1053 Change the medium for a removable disk device to point to @var{filename}. eg
1054
1055 @example
1056 (qemu) change cdrom /path/to/some.iso
1057 @end example
1058
1059 @item change vnc @var{display},@var{options}
1060 Change the configuration of the VNC server. The valid syntax for @var{display}
1061 and @var{options} are described at @ref{sec_invocation}. eg
1062
1063 @example
1064 (qemu) change vnc localhost:1
1065 @end example
1066
1067 @item change vnc password
1068
1069 Change the password associated with the VNC server. The monitor will prompt for
1070 the new password to be entered. VNC passwords are only significant upto 8 letters.
1071 eg.
1072
1073 @example
1074 (qemu) change vnc password
1075 Password: ********
1076 @end example
1077
1078 @end table
1079
1080 @item screendump @var{filename}
1081 Save screen into PPM image @var{filename}.
1082
1083 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1084 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1085 with optional scroll axis @var{dz}.
1086
1087 @item mouse_button @var{val}
1088 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1089
1090 @item mouse_set @var{index}
1091 Set which mouse device receives events at given @var{index}, index
1092 can be obtained with
1093 @example
1094 info mice
1095 @end example
1096
1097 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1098 Capture audio into @var{filename}. Using sample rate @var{frequency}
1099 bits per sample @var{bits} and number of channels @var{channels}.
1100
1101 Defaults:
1102 @itemize @minus
1103 @item Sample rate = 44100 Hz - CD quality
1104 @item Bits = 16
1105 @item Number of channels = 2 - Stereo
1106 @end itemize
1107
1108 @item stopcapture @var{index}
1109 Stop capture with a given @var{index}, index can be obtained with
1110 @example
1111 info capture
1112 @end example
1113
1114 @item log @var{item1}[,...]
1115 Activate logging of the specified items to @file{/tmp/qemu.log}.
1116
1117 @item savevm [@var{tag}|@var{id}]
1118 Create a snapshot of the whole virtual machine. If @var{tag} is
1119 provided, it is used as human readable identifier. If there is already
1120 a snapshot with the same tag or ID, it is replaced. More info at
1121 @ref{vm_snapshots}.
1122
1123 @item loadvm @var{tag}|@var{id}
1124 Set the whole virtual machine to the snapshot identified by the tag
1125 @var{tag} or the unique snapshot ID @var{id}.
1126
1127 @item delvm @var{tag}|@var{id}
1128 Delete the snapshot identified by @var{tag} or @var{id}.
1129
1130 @item stop
1131 Stop emulation.
1132
1133 @item c or cont
1134 Resume emulation.
1135
1136 @item gdbserver [@var{port}]
1137 Start gdbserver session (default @var{port}=1234)
1138
1139 @item x/fmt @var{addr}
1140 Virtual memory dump starting at @var{addr}.
1141
1142 @item xp /@var{fmt} @var{addr}
1143 Physical memory dump starting at @var{addr}.
1144
1145 @var{fmt} is a format which tells the command how to format the
1146 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1147
1148 @table @var
1149 @item count
1150 is the number of items to be dumped.
1151
1152 @item format
1153 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1154 c (char) or i (asm instruction).
1155
1156 @item size
1157 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1158 @code{h} or @code{w} can be specified with the @code{i} format to
1159 respectively select 16 or 32 bit code instruction size.
1160
1161 @end table
1162
1163 Examples:
1164 @itemize
1165 @item
1166 Dump 10 instructions at the current instruction pointer:
1167 @example
1168 (qemu) x/10i $eip
1169 0x90107063:  ret
1170 0x90107064:  sti
1171 0x90107065:  lea    0x0(%esi,1),%esi
1172 0x90107069:  lea    0x0(%edi,1),%edi
1173 0x90107070:  ret
1174 0x90107071:  jmp    0x90107080
1175 0x90107073:  nop
1176 0x90107074:  nop
1177 0x90107075:  nop
1178 0x90107076:  nop
1179 @end example
1180
1181 @item
1182 Dump 80 16 bit values at the start of the video memory.
1183 @smallexample
1184 (qemu) xp/80hx 0xb8000
1185 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1186 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1187 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1188 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1189 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1190 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1191 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1192 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1193 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1194 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1195 @end smallexample
1196 @end itemize
1197
1198 @item p or print/@var{fmt} @var{expr}
1199
1200 Print expression value. Only the @var{format} part of @var{fmt} is
1201 used.
1202
1203 @item sendkey @var{keys}
1204
1205 Send @var{keys} to the emulator. Use @code{-} to press several keys
1206 simultaneously. Example:
1207 @example
1208 sendkey ctrl-alt-f1
1209 @end example
1210
1211 This command is useful to send keys that your graphical user interface
1212 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1213
1214 @item system_reset
1215
1216 Reset the system.
1217
1218 @item usb_add @var{devname}
1219
1220 Add the USB device @var{devname}.  For details of available devices see
1221 @ref{usb_devices}
1222
1223 @item usb_del @var{devname}
1224
1225 Remove the USB device @var{devname} from the QEMU virtual USB
1226 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1227 command @code{info usb} to see the devices you can remove.
1228
1229 @end table
1230
1231 @subsection Integer expressions
1232
1233 The monitor understands integers expressions for every integer
1234 argument. You can use register names to get the value of specifics
1235 CPU registers by prefixing them with @emph{$}.
1236
1237 @node disk_images
1238 @section Disk Images
1239
1240 Since version 0.6.1, QEMU supports many disk image formats, including
1241 growable disk images (their size increase as non empty sectors are
1242 written), compressed and encrypted disk images. Version 0.8.3 added
1243 the new qcow2 disk image format which is essential to support VM
1244 snapshots.
1245
1246 @menu
1247 * disk_images_quickstart::    Quick start for disk image creation
1248 * disk_images_snapshot_mode:: Snapshot mode
1249 * vm_snapshots::              VM snapshots
1250 * qemu_img_invocation::       qemu-img Invocation
1251 * host_drives::               Using host drives
1252 * disk_images_fat_images::    Virtual FAT disk images
1253 @end menu
1254
1255 @node disk_images_quickstart
1256 @subsection Quick start for disk image creation
1257
1258 You can create a disk image with the command:
1259 @example
1260 qemu-img create myimage.img mysize
1261 @end example
1262 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1263 size in kilobytes. You can add an @code{M} suffix to give the size in
1264 megabytes and a @code{G} suffix for gigabytes.
1265
1266 See @ref{qemu_img_invocation} for more information.
1267
1268 @node disk_images_snapshot_mode
1269 @subsection Snapshot mode
1270
1271 If you use the option @option{-snapshot}, all disk images are
1272 considered as read only. When sectors in written, they are written in
1273 a temporary file created in @file{/tmp}. You can however force the
1274 write back to the raw disk images by using the @code{commit} monitor
1275 command (or @key{C-a s} in the serial console).
1276
1277 @node vm_snapshots
1278 @subsection VM snapshots
1279
1280 VM snapshots are snapshots of the complete virtual machine including
1281 CPU state, RAM, device state and the content of all the writable
1282 disks. In order to use VM snapshots, you must have at least one non
1283 removable and writable block device using the @code{qcow2} disk image
1284 format. Normally this device is the first virtual hard drive.
1285
1286 Use the monitor command @code{savevm} to create a new VM snapshot or
1287 replace an existing one. A human readable name can be assigned to each
1288 snapshot in addition to its numerical ID.
1289
1290 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1291 a VM snapshot. @code{info snapshots} lists the available snapshots
1292 with their associated information:
1293
1294 @example
1295 (qemu) info snapshots
1296 Snapshot devices: hda
1297 Snapshot list (from hda):
1298 ID        TAG                 VM SIZE                DATE       VM CLOCK
1299 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1300 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1301 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1302 @end example
1303
1304 A VM snapshot is made of a VM state info (its size is shown in
1305 @code{info snapshots}) and a snapshot of every writable disk image.
1306 The VM state info is stored in the first @code{qcow2} non removable
1307 and writable block device. The disk image snapshots are stored in
1308 every disk image. The size of a snapshot in a disk image is difficult
1309 to evaluate and is not shown by @code{info snapshots} because the
1310 associated disk sectors are shared among all the snapshots to save
1311 disk space (otherwise each snapshot would need a full copy of all the
1312 disk images).
1313
1314 When using the (unrelated) @code{-snapshot} option
1315 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1316 but they are deleted as soon as you exit QEMU.
1317
1318 VM snapshots currently have the following known limitations:
1319 @itemize
1320 @item
1321 They cannot cope with removable devices if they are removed or
1322 inserted after a snapshot is done.
1323 @item
1324 A few device drivers still have incomplete snapshot support so their
1325 state is not saved or restored properly (in particular USB).
1326 @end itemize
1327
1328 @node qemu_img_invocation
1329 @subsection @code{qemu-img} Invocation
1330
1331 @include qemu-img.texi
1332
1333 @node host_drives
1334 @subsection Using host drives
1335
1336 In addition to disk image files, QEMU can directly access host
1337 devices. We describe here the usage for QEMU version >= 0.8.3.
1338
1339 @subsubsection Linux
1340
1341 On Linux, you can directly use the host device filename instead of a
1342 disk image filename provided you have enough privileges to access
1343 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1344 @file{/dev/fd0} for the floppy.
1345
1346 @table @code
1347 @item CD
1348 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1349 specific code to detect CDROM insertion or removal. CDROM ejection by
1350 the guest OS is supported. Currently only data CDs are supported.
1351 @item Floppy
1352 You can specify a floppy device even if no floppy is loaded. Floppy
1353 removal is currently not detected accurately (if you change floppy
1354 without doing floppy access while the floppy is not loaded, the guest
1355 OS will think that the same floppy is loaded).
1356 @item Hard disks
1357 Hard disks can be used. Normally you must specify the whole disk
1358 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1359 see it as a partitioned disk. WARNING: unless you know what you do, it
1360 is better to only make READ-ONLY accesses to the hard disk otherwise
1361 you may corrupt your host data (use the @option{-snapshot} command
1362 line option or modify the device permissions accordingly).
1363 @end table
1364
1365 @subsubsection Windows
1366
1367 @table @code
1368 @item CD
1369 The preferred syntax is the drive letter (e.g. @file{d:}). The
1370 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1371 supported as an alias to the first CDROM drive.
1372
1373 Currently there is no specific code to handle removable media, so it
1374 is better to use the @code{change} or @code{eject} monitor commands to
1375 change or eject media.
1376 @item Hard disks
1377 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1378 where @var{N} is the drive number (0 is the first hard disk).
1379
1380 WARNING: unless you know what you do, it is better to only make
1381 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1382 host data (use the @option{-snapshot} command line so that the
1383 modifications are written in a temporary file).
1384 @end table
1385
1386
1387 @subsubsection Mac OS X
1388
1389 @file{/dev/cdrom} is an alias to the first CDROM.
1390
1391 Currently there is no specific code to handle removable media, so it
1392 is better to use the @code{change} or @code{eject} monitor commands to
1393 change or eject media.
1394
1395 @node disk_images_fat_images
1396 @subsection Virtual FAT disk images
1397
1398 QEMU can automatically create a virtual FAT disk image from a
1399 directory tree. In order to use it, just type:
1400
1401 @example
1402 qemu linux.img -hdb fat:/my_directory
1403 @end example
1404
1405 Then you access access to all the files in the @file{/my_directory}
1406 directory without having to copy them in a disk image or to export
1407 them via SAMBA or NFS. The default access is @emph{read-only}.
1408
1409 Floppies can be emulated with the @code{:floppy:} option:
1410
1411 @example
1412 qemu linux.img -fda fat:floppy:/my_directory
1413 @end example
1414
1415 A read/write support is available for testing (beta stage) with the
1416 @code{:rw:} option:
1417
1418 @example
1419 qemu linux.img -fda fat:floppy:rw:/my_directory
1420 @end example
1421
1422 What you should @emph{never} do:
1423 @itemize
1424 @item use non-ASCII filenames ;
1425 @item use "-snapshot" together with ":rw:" ;
1426 @item expect it to work when loadvm'ing ;
1427 @item write to the FAT directory on the host system while accessing it with the guest system.
1428 @end itemize
1429
1430 @node pcsys_network
1431 @section Network emulation
1432
1433 QEMU can simulate several network cards (PCI or ISA cards on the PC
1434 target) and can connect them to an arbitrary number of Virtual Local
1435 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1436 VLAN. VLAN can be connected between separate instances of QEMU to
1437 simulate large networks. For simpler usage, a non privileged user mode
1438 network stack can replace the TAP device to have a basic network
1439 connection.
1440
1441 @subsection VLANs
1442
1443 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1444 connection between several network devices. These devices can be for
1445 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1446 (TAP devices).
1447
1448 @subsection Using TAP network interfaces
1449
1450 This is the standard way to connect QEMU to a real network. QEMU adds
1451 a virtual network device on your host (called @code{tapN}), and you
1452 can then configure it as if it was a real ethernet card.
1453
1454 @subsubsection Linux host
1455
1456 As an example, you can download the @file{linux-test-xxx.tar.gz}
1457 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1458 configure properly @code{sudo} so that the command @code{ifconfig}
1459 contained in @file{qemu-ifup} can be executed as root. You must verify
1460 that your host kernel supports the TAP network interfaces: the
1461 device @file{/dev/net/tun} must be present.
1462
1463 See @ref{sec_invocation} to have examples of command lines using the
1464 TAP network interfaces.
1465
1466 @subsubsection Windows host
1467
1468 There is a virtual ethernet driver for Windows 2000/XP systems, called
1469 TAP-Win32. But it is not included in standard QEMU for Windows,
1470 so you will need to get it separately. It is part of OpenVPN package,
1471 so download OpenVPN from : @url{http://openvpn.net/}.
1472
1473 @subsection Using the user mode network stack
1474
1475 By using the option @option{-net user} (default configuration if no
1476 @option{-net} option is specified), QEMU uses a completely user mode
1477 network stack (you don't need root privilege to use the virtual
1478 network). The virtual network configuration is the following:
1479
1480 @example
1481
1482          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1483                            |          (10.0.2.2)
1484                            |
1485                            ---->  DNS server (10.0.2.3)
1486                            |
1487                            ---->  SMB server (10.0.2.4)
1488 @end example
1489
1490 The QEMU VM behaves as if it was behind a firewall which blocks all
1491 incoming connections. You can use a DHCP client to automatically
1492 configure the network in the QEMU VM. The DHCP server assign addresses
1493 to the hosts starting from 10.0.2.15.
1494
1495 In order to check that the user mode network is working, you can ping
1496 the address 10.0.2.2 and verify that you got an address in the range
1497 10.0.2.x from the QEMU virtual DHCP server.
1498
1499 Note that @code{ping} is not supported reliably to the internet as it
1500 would require root privileges. It means you can only ping the local
1501 router (10.0.2.2).
1502
1503 When using the built-in TFTP server, the router is also the TFTP
1504 server.
1505
1506 When using the @option{-redir} option, TCP or UDP connections can be
1507 redirected from the host to the guest. It allows for example to
1508 redirect X11, telnet or SSH connections.
1509
1510 @subsection Connecting VLANs between QEMU instances
1511
1512 Using the @option{-net socket} option, it is possible to make VLANs
1513 that span several QEMU instances. See @ref{sec_invocation} to have a
1514 basic example.
1515
1516 @node direct_linux_boot
1517 @section Direct Linux Boot
1518
1519 This section explains how to launch a Linux kernel inside QEMU without
1520 having to make a full bootable image. It is very useful for fast Linux
1521 kernel testing.
1522
1523 The syntax is:
1524 @example
1525 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1526 @end example
1527
1528 Use @option{-kernel} to provide the Linux kernel image and
1529 @option{-append} to give the kernel command line arguments. The
1530 @option{-initrd} option can be used to provide an INITRD image.
1531
1532 When using the direct Linux boot, a disk image for the first hard disk
1533 @file{hda} is required because its boot sector is used to launch the
1534 Linux kernel.
1535
1536 If you do not need graphical output, you can disable it and redirect
1537 the virtual serial port and the QEMU monitor to the console with the
1538 @option{-nographic} option. The typical command line is:
1539 @example
1540 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1541      -append "root=/dev/hda console=ttyS0" -nographic
1542 @end example
1543
1544 Use @key{Ctrl-a c} to switch between the serial console and the
1545 monitor (@pxref{pcsys_keys}).
1546
1547 @node pcsys_usb
1548 @section USB emulation
1549
1550 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1551 virtual USB devices or real host USB devices (experimental, works only
1552 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1553 as necessary to connect multiple USB devices.
1554
1555 @menu
1556 * usb_devices::
1557 * host_usb_devices::
1558 @end menu
1559 @node usb_devices
1560 @subsection Connecting USB devices
1561
1562 USB devices can be connected with the @option{-usbdevice} commandline option
1563 or the @code{usb_add} monitor command.  Available devices are:
1564
1565 @table @var
1566 @item @code{mouse}
1567 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1568 @item @code{tablet}
1569 Pointer device that uses absolute coordinates (like a touchscreen).
1570 This means qemu is able to report the mouse position without having
1571 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1572 @item @code{disk:@var{file}}
1573 Mass storage device based on @var{file} (@pxref{disk_images})
1574 @item @code{host:@var{bus.addr}}
1575 Pass through the host device identified by @var{bus.addr}
1576 (Linux only)
1577 @item @code{host:@var{vendor_id:product_id}}
1578 Pass through the host device identified by @var{vendor_id:product_id}
1579 (Linux only)
1580 @item @code{wacom-tablet}
1581 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1582 above but it can be used with the tslib library because in addition to touch
1583 coordinates it reports touch pressure.
1584 @item @code{keyboard}
1585 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1586 @end table
1587
1588 @node host_usb_devices
1589 @subsection Using host USB devices on a Linux host
1590
1591 WARNING: this is an experimental feature. QEMU will slow down when
1592 using it. USB devices requiring real time streaming (i.e. USB Video
1593 Cameras) are not supported yet.
1594
1595 @enumerate
1596 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1597 is actually using the USB device. A simple way to do that is simply to
1598 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1599 to @file{mydriver.o.disabled}.
1600
1601 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1602 @example
1603 ls /proc/bus/usb
1604 001  devices  drivers
1605 @end example
1606
1607 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1608 @example
1609 chown -R myuid /proc/bus/usb
1610 @end example
1611
1612 @item Launch QEMU and do in the monitor:
1613 @example
1614 info usbhost
1615   Device 1.2, speed 480 Mb/s
1616     Class 00: USB device 1234:5678, USB DISK
1617 @end example
1618 You should see the list of the devices you can use (Never try to use
1619 hubs, it won't work).
1620
1621 @item Add the device in QEMU by using:
1622 @example
1623 usb_add host:1234:5678
1624 @end example
1625
1626 Normally the guest OS should report that a new USB device is
1627 plugged. You can use the option @option{-usbdevice} to do the same.
1628
1629 @item Now you can try to use the host USB device in QEMU.
1630
1631 @end enumerate
1632
1633 When relaunching QEMU, you may have to unplug and plug again the USB
1634 device to make it work again (this is a bug).
1635
1636 @node vnc_security
1637 @section VNC security
1638
1639 The VNC server capability provides access to the graphical console
1640 of the guest VM across the network. This has a number of security
1641 considerations depending on the deployment scenarios.
1642
1643 @menu
1644 * vnc_sec_none::
1645 * vnc_sec_password::
1646 * vnc_sec_certificate::
1647 * vnc_sec_certificate_verify::
1648 * vnc_sec_certificate_pw::
1649 * vnc_generate_cert::
1650 @end menu
1651 @node vnc_sec_none
1652 @subsection Without passwords
1653
1654 The simplest VNC server setup does not include any form of authentication.
1655 For this setup it is recommended to restrict it to listen on a UNIX domain
1656 socket only. For example
1657
1658 @example
1659 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1660 @end example
1661
1662 This ensures that only users on local box with read/write access to that
1663 path can access the VNC server. To securely access the VNC server from a
1664 remote machine, a combination of netcat+ssh can be used to provide a secure
1665 tunnel.
1666
1667 @node vnc_sec_password
1668 @subsection With passwords
1669
1670 The VNC protocol has limited support for password based authentication. Since
1671 the protocol limits passwords to 8 characters it should not be considered
1672 to provide high security. The password can be fairly easily brute-forced by
1673 a client making repeat connections. For this reason, a VNC server using password
1674 authentication should be restricted to only listen on the loopback interface
1675 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1676 option, and then once QEMU is running the password is set with the monitor. Until
1677 the monitor is used to set the password all clients will be rejected.
1678
1679 @example
1680 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1681 (qemu) change vnc password
1682 Password: ********
1683 (qemu)
1684 @end example
1685
1686 @node vnc_sec_certificate
1687 @subsection With x509 certificates
1688
1689 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1690 TLS for encryption of the session, and x509 certificates for authentication.
1691 The use of x509 certificates is strongly recommended, because TLS on its
1692 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1693 support provides a secure session, but no authentication. This allows any
1694 client to connect, and provides an encrypted session.
1695
1696 @example
1697 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1698 @end example
1699
1700 In the above example @code{/etc/pki/qemu} should contain at least three files,
1701 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1702 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1703 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1704 only be readable by the user owning it.
1705
1706 @node vnc_sec_certificate_verify
1707 @subsection With x509 certificates and client verification
1708
1709 Certificates can also provide a means to authenticate the client connecting.
1710 The server will request that the client provide a certificate, which it will
1711 then validate against the CA certificate. This is a good choice if deploying
1712 in an environment with a private internal certificate authority.
1713
1714 @example
1715 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1716 @end example
1717
1718
1719 @node vnc_sec_certificate_pw
1720 @subsection With x509 certificates, client verification and passwords
1721
1722 Finally, the previous method can be combined with VNC password authentication
1723 to provide two layers of authentication for clients.
1724
1725 @example
1726 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1727 (qemu) change vnc password
1728 Password: ********
1729 (qemu)
1730 @end example
1731
1732 @node vnc_generate_cert
1733 @subsection Generating certificates for VNC
1734
1735 The GNU TLS packages provides a command called @code{certtool} which can
1736 be used to generate certificates and keys in PEM format. At a minimum it
1737 is neccessary to setup a certificate authority, and issue certificates to
1738 each server. If using certificates for authentication, then each client
1739 will also need to be issued a certificate. The recommendation is for the
1740 server to keep its certificates in either @code{/etc/pki/qemu} or for
1741 unprivileged users in @code{$HOME/.pki/qemu}.
1742
1743 @menu
1744 * vnc_generate_ca::
1745 * vnc_generate_server::
1746 * vnc_generate_client::
1747 @end menu
1748 @node vnc_generate_ca
1749 @subsubsection Setup the Certificate Authority
1750
1751 This step only needs to be performed once per organization / organizational
1752 unit. First the CA needs a private key. This key must be kept VERY secret
1753 and secure. If this key is compromised the entire trust chain of the certificates
1754 issued with it is lost.
1755
1756 @example
1757 # certtool --generate-privkey > ca-key.pem
1758 @end example
1759
1760 A CA needs to have a public certificate. For simplicity it can be a self-signed
1761 certificate, or one issue by a commercial certificate issuing authority. To
1762 generate a self-signed certificate requires one core piece of information, the
1763 name of the organization.
1764
1765 @example
1766 # cat > ca.info <<EOF
1767 cn = Name of your organization
1768 ca
1769 cert_signing_key
1770 EOF
1771 # certtool --generate-self-signed \
1772            --load-privkey ca-key.pem
1773            --template ca.info \
1774            --outfile ca-cert.pem
1775 @end example
1776
1777 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1778 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1779
1780 @node vnc_generate_server
1781 @subsubsection Issuing server certificates
1782
1783 Each server (or host) needs to be issued with a key and certificate. When connecting
1784 the certificate is sent to the client which validates it against the CA certificate.
1785 The core piece of information for a server certificate is the hostname. This should
1786 be the fully qualified hostname that the client will connect with, since the client
1787 will typically also verify the hostname in the certificate. On the host holding the
1788 secure CA private key:
1789
1790 @example
1791 # cat > server.info <<EOF
1792 organization = Name  of your organization
1793 cn = server.foo.example.com
1794 tls_www_server
1795 encryption_key
1796 signing_key
1797 EOF
1798 # certtool --generate-privkey > server-key.pem
1799 # certtool --generate-certificate \
1800            --load-ca-certificate ca-cert.pem \
1801            --load-ca-privkey ca-key.pem \
1802            --load-privkey server server-key.pem \
1803            --template server.info \
1804            --outfile server-cert.pem
1805 @end example
1806
1807 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1808 to the server for which they were generated. The @code{server-key.pem} is security
1809 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1810
1811 @node vnc_generate_client
1812 @subsubsection Issuing client certificates
1813
1814 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1815 certificates as its authentication mechanism, each client also needs to be issued
1816 a certificate. The client certificate contains enough metadata to uniquely identify
1817 the client, typically organization, state, city, building, etc. On the host holding
1818 the secure CA private key:
1819
1820 @example
1821 # cat > client.info <<EOF
1822 country = GB
1823 state = London
1824 locality = London
1825 organiazation = Name of your organization
1826 cn = client.foo.example.com
1827 tls_www_client
1828 encryption_key
1829 signing_key
1830 EOF
1831 # certtool --generate-privkey > client-key.pem
1832 # certtool --generate-certificate \
1833            --load-ca-certificate ca-cert.pem \
1834            --load-ca-privkey ca-key.pem \
1835            --load-privkey client-key.pem \
1836            --template client.info \
1837            --outfile client-cert.pem
1838 @end example
1839
1840 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1841 copied to the client for which they were generated.
1842
1843 @node gdb_usage
1844 @section GDB usage
1845
1846 QEMU has a primitive support to work with gdb, so that you can do
1847 'Ctrl-C' while the virtual machine is running and inspect its state.
1848
1849 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1850 gdb connection:
1851 @example
1852 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1853        -append "root=/dev/hda"
1854 Connected to host network interface: tun0
1855 Waiting gdb connection on port 1234
1856 @end example
1857
1858 Then launch gdb on the 'vmlinux' executable:
1859 @example
1860 > gdb vmlinux
1861 @end example
1862
1863 In gdb, connect to QEMU:
1864 @example
1865 (gdb) target remote localhost:1234
1866 @end example
1867
1868 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1869 @example
1870 (gdb) c
1871 @end example
1872
1873 Here are some useful tips in order to use gdb on system code:
1874
1875 @enumerate
1876 @item
1877 Use @code{info reg} to display all the CPU registers.
1878 @item
1879 Use @code{x/10i $eip} to display the code at the PC position.
1880 @item
1881 Use @code{set architecture i8086} to dump 16 bit code. Then use
1882 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1883 @end enumerate
1884
1885 @node pcsys_os_specific
1886 @section Target OS specific information
1887
1888 @subsection Linux
1889
1890 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1891 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1892 color depth in the guest and the host OS.
1893
1894 When using a 2.6 guest Linux kernel, you should add the option
1895 @code{clock=pit} on the kernel command line because the 2.6 Linux
1896 kernels make very strict real time clock checks by default that QEMU
1897 cannot simulate exactly.
1898
1899 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1900 not activated because QEMU is slower with this patch. The QEMU
1901 Accelerator Module is also much slower in this case. Earlier Fedora
1902 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1903 patch by default. Newer kernels don't have it.
1904
1905 @subsection Windows
1906
1907 If you have a slow host, using Windows 95 is better as it gives the
1908 best speed. Windows 2000 is also a good choice.
1909
1910 @subsubsection SVGA graphic modes support
1911
1912 QEMU emulates a Cirrus Logic GD5446 Video
1913 card. All Windows versions starting from Windows 95 should recognize
1914 and use this graphic card. For optimal performances, use 16 bit color
1915 depth in the guest and the host OS.
1916
1917 If you are using Windows XP as guest OS and if you want to use high
1918 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1919 1280x1024x16), then you should use the VESA VBE virtual graphic card
1920 (option @option{-std-vga}).
1921
1922 @subsubsection CPU usage reduction
1923
1924 Windows 9x does not correctly use the CPU HLT
1925 instruction. The result is that it takes host CPU cycles even when
1926 idle. You can install the utility from
1927 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1928 problem. Note that no such tool is needed for NT, 2000 or XP.
1929
1930 @subsubsection Windows 2000 disk full problem
1931
1932 Windows 2000 has a bug which gives a disk full problem during its
1933 installation. When installing it, use the @option{-win2k-hack} QEMU
1934 option to enable a specific workaround. After Windows 2000 is
1935 installed, you no longer need this option (this option slows down the
1936 IDE transfers).
1937
1938 @subsubsection Windows 2000 shutdown
1939
1940 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1941 can. It comes from the fact that Windows 2000 does not automatically
1942 use the APM driver provided by the BIOS.
1943
1944 In order to correct that, do the following (thanks to Struan
1945 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1946 Add/Troubleshoot a device => Add a new device & Next => No, select the
1947 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1948 (again) a few times. Now the driver is installed and Windows 2000 now
1949 correctly instructs QEMU to shutdown at the appropriate moment.
1950
1951 @subsubsection Share a directory between Unix and Windows
1952
1953 See @ref{sec_invocation} about the help of the option @option{-smb}.
1954
1955 @subsubsection Windows XP security problem
1956
1957 Some releases of Windows XP install correctly but give a security
1958 error when booting:
1959 @example
1960 A problem is preventing Windows from accurately checking the
1961 license for this computer. Error code: 0x800703e6.
1962 @end example
1963
1964 The workaround is to install a service pack for XP after a boot in safe
1965 mode. Then reboot, and the problem should go away. Since there is no
1966 network while in safe mode, its recommended to download the full
1967 installation of SP1 or SP2 and transfer that via an ISO or using the
1968 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1969
1970 @subsection MS-DOS and FreeDOS
1971
1972 @subsubsection CPU usage reduction
1973
1974 DOS does not correctly use the CPU HLT instruction. The result is that
1975 it takes host CPU cycles even when idle. You can install the utility
1976 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1977 problem.
1978
1979 @node QEMU System emulator for non PC targets
1980 @chapter QEMU System emulator for non PC targets
1981
1982 QEMU is a generic emulator and it emulates many non PC
1983 machines. Most of the options are similar to the PC emulator. The
1984 differences are mentioned in the following sections.
1985
1986 @menu
1987 * QEMU PowerPC System emulator::
1988 * Sparc32 System emulator::
1989 * Sparc64 System emulator::
1990 * MIPS System emulator::
1991 * ARM System emulator::
1992 * ColdFire System emulator::
1993 @end menu
1994
1995 @node QEMU PowerPC System emulator
1996 @section QEMU PowerPC System emulator
1997
1998 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1999 or PowerMac PowerPC system.
2000
2001 QEMU emulates the following PowerMac peripherals:
2002
2003 @itemize @minus
2004 @item
2005 UniNorth PCI Bridge
2006 @item
2007 PCI VGA compatible card with VESA Bochs Extensions
2008 @item
2009 2 PMAC IDE interfaces with hard disk and CD-ROM support
2010 @item
2011 NE2000 PCI adapters
2012 @item
2013 Non Volatile RAM
2014 @item
2015 VIA-CUDA with ADB keyboard and mouse.
2016 @end itemize
2017
2018 QEMU emulates the following PREP peripherals:
2019
2020 @itemize @minus
2021 @item
2022 PCI Bridge
2023 @item
2024 PCI VGA compatible card with VESA Bochs Extensions
2025 @item
2026 2 IDE interfaces with hard disk and CD-ROM support
2027 @item
2028 Floppy disk
2029 @item
2030 NE2000 network adapters
2031 @item
2032 Serial port
2033 @item
2034 PREP Non Volatile RAM
2035 @item
2036 PC compatible keyboard and mouse.
2037 @end itemize
2038
2039 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2040 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2041
2042 @c man begin OPTIONS
2043
2044 The following options are specific to the PowerPC emulation:
2045
2046 @table @option
2047
2048 @item -g WxH[xDEPTH]
2049
2050 Set the initial VGA graphic mode. The default is 800x600x15.
2051
2052 @end table
2053
2054 @c man end
2055
2056
2057 More information is available at
2058 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2059
2060 @node Sparc32 System emulator
2061 @section Sparc32 System emulator
2062
2063 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2064 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2065 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2066 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2067 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2068 of usable CPUs to 4.
2069
2070 QEMU emulates the following sun4m/sun4d peripherals:
2071
2072 @itemize @minus
2073 @item
2074 IOMMU or IO-UNITs
2075 @item
2076 TCX Frame buffer
2077 @item
2078 Lance (Am7990) Ethernet
2079 @item
2080 Non Volatile RAM M48T08
2081 @item
2082 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2083 and power/reset logic
2084 @item
2085 ESP SCSI controller with hard disk and CD-ROM support
2086 @item
2087 Floppy drive (not on SS-600MP)
2088 @item
2089 CS4231 sound device (only on SS-5, not working yet)
2090 @end itemize
2091
2092 The number of peripherals is fixed in the architecture.  Maximum
2093 memory size depends on the machine type, for SS-5 it is 256MB and for
2094 others 2047MB.
2095
2096 Since version 0.8.2, QEMU uses OpenBIOS
2097 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2098 firmware implementation. The goal is to implement a 100% IEEE
2099 1275-1994 (referred to as Open Firmware) compliant firmware.
2100
2101 A sample Linux 2.6 series kernel and ram disk image are available on
2102 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2103 Solaris kernels don't work.
2104
2105 @c man begin OPTIONS
2106
2107 The following options are specific to the Sparc32 emulation:
2108
2109 @table @option
2110
2111 @item -g WxHx[xDEPTH]
2112
2113 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2114 the only other possible mode is 1024x768x24.
2115
2116 @item -prom-env string
2117
2118 Set OpenBIOS variables in NVRAM, for example:
2119
2120 @example
2121 qemu-system-sparc -prom-env 'auto-boot?=false' \
2122  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2123 @end example
2124
2125 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2126
2127 Set the emulated machine type. Default is SS-5.
2128
2129 @end table
2130
2131 @c man end
2132
2133 @node Sparc64 System emulator
2134 @section Sparc64 System emulator
2135
2136 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2137 The emulator is not usable for anything yet.
2138
2139 QEMU emulates the following sun4u peripherals:
2140
2141 @itemize @minus
2142 @item
2143 UltraSparc IIi APB PCI Bridge
2144 @item
2145 PCI VGA compatible card with VESA Bochs Extensions
2146 @item
2147 Non Volatile RAM M48T59
2148 @item
2149 PC-compatible serial ports
2150 @end itemize
2151
2152 @node MIPS System emulator
2153 @section MIPS System emulator
2154
2155 Four executables cover simulation of 32 and 64-bit MIPS systems in
2156 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2157 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2158 Four different machine types are emulated:
2159
2160 @itemize @minus
2161 @item
2162 A generic ISA PC-like machine "mips"
2163 @item
2164 The MIPS Malta prototype board "malta"
2165 @item
2166 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2167 @item
2168 MIPS emulator pseudo board "mipssim"
2169 @end itemize
2170
2171 The generic emulation is supported by Debian 'Etch' and is able to
2172 install Debian into a virtual disk image. The following devices are
2173 emulated:
2174
2175 @itemize @minus
2176 @item
2177 A range of MIPS CPUs, default is the 24Kf
2178 @item
2179 PC style serial port
2180 @item
2181 PC style IDE disk
2182 @item
2183 NE2000 network card
2184 @end itemize
2185
2186 The Malta emulation supports the following devices:
2187
2188 @itemize @minus
2189 @item
2190 Core board with MIPS 24Kf CPU and Galileo system controller
2191 @item
2192 PIIX4 PCI/USB/SMbus controller
2193 @item
2194 The Multi-I/O chip's serial device
2195 @item
2196 PCnet32 PCI network card
2197 @item
2198 Malta FPGA serial device
2199 @item
2200 Cirrus VGA graphics card
2201 @end itemize
2202
2203 The ACER Pica emulation supports:
2204
2205 @itemize @minus
2206 @item
2207 MIPS R4000 CPU
2208 @item
2209 PC-style IRQ and DMA controllers
2210 @item
2211 PC Keyboard
2212 @item
2213 IDE controller
2214 @end itemize
2215
2216 The mipssim pseudo board emulation provides an environment similiar
2217 to what the proprietary MIPS emulator uses for running Linux.
2218 It supports:
2219
2220 @itemize @minus
2221 @item
2222 A range of MIPS CPUs, default is the 24Kf
2223 @item
2224 PC style serial port
2225 @item
2226 MIPSnet network emulation
2227 @end itemize
2228
2229 @node ARM System emulator
2230 @section ARM System emulator
2231
2232 Use the executable @file{qemu-system-arm} to simulate a ARM
2233 machine. The ARM Integrator/CP board is emulated with the following
2234 devices:
2235
2236 @itemize @minus
2237 @item
2238 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2239 @item
2240 Two PL011 UARTs
2241 @item
2242 SMC 91c111 Ethernet adapter
2243 @item
2244 PL110 LCD controller
2245 @item
2246 PL050 KMI with PS/2 keyboard and mouse.
2247 @item
2248 PL181 MultiMedia Card Interface with SD card.
2249 @end itemize
2250
2251 The ARM Versatile baseboard is emulated with the following devices:
2252
2253 @itemize @minus
2254 @item
2255 ARM926E, ARM1136 or Cortex-A8 CPU
2256 @item
2257 PL190 Vectored Interrupt Controller
2258 @item
2259 Four PL011 UARTs
2260 @item
2261 SMC 91c111 Ethernet adapter
2262 @item
2263 PL110 LCD controller
2264 @item
2265 PL050 KMI with PS/2 keyboard and mouse.
2266 @item
2267 PCI host bridge.  Note the emulated PCI bridge only provides access to
2268 PCI memory space.  It does not provide access to PCI IO space.
2269 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2270 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2271 mapped control registers.
2272 @item
2273 PCI OHCI USB controller.
2274 @item
2275 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2276 @item
2277 PL181 MultiMedia Card Interface with SD card.
2278 @end itemize
2279
2280 The ARM RealView Emulation baseboard is emulated with the following devices:
2281
2282 @itemize @minus
2283 @item
2284 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2285 @item
2286 ARM AMBA Generic/Distributed Interrupt Controller
2287 @item
2288 Four PL011 UARTs
2289 @item
2290 SMC 91c111 Ethernet adapter
2291 @item
2292 PL110 LCD controller
2293 @item
2294 PL050 KMI with PS/2 keyboard and mouse
2295 @item
2296 PCI host bridge
2297 @item
2298 PCI OHCI USB controller
2299 @item
2300 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2301 @item
2302 PL181 MultiMedia Card Interface with SD card.
2303 @end itemize
2304
2305 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2306 and "Terrier") emulation includes the following peripherals:
2307
2308 @itemize @minus
2309 @item
2310 Intel PXA270 System-on-chip (ARM V5TE core)
2311 @item
2312 NAND Flash memory
2313 @item
2314 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2315 @item
2316 On-chip OHCI USB controller
2317 @item
2318 On-chip LCD controller
2319 @item
2320 On-chip Real Time Clock
2321 @item
2322 TI ADS7846 touchscreen controller on SSP bus
2323 @item
2324 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2325 @item
2326 GPIO-connected keyboard controller and LEDs
2327 @item
2328 Secure Digital card connected to PXA MMC/SD host
2329 @item
2330 Three on-chip UARTs
2331 @item
2332 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2333 @end itemize
2334
2335 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2336 following elements:
2337
2338 @itemize @minus
2339 @item
2340 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2341 @item
2342 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2343 @item
2344 On-chip LCD controller
2345 @item
2346 On-chip Real Time Clock
2347 @item
2348 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2349 CODEC, connected through MicroWire and I@math{^2}S busses
2350 @item
2351 GPIO-connected matrix keypad
2352 @item
2353 Secure Digital card connected to OMAP MMC/SD host
2354 @item
2355 Three on-chip UARTs
2356 @end itemize
2357
2358 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2359 devices:
2360
2361 @itemize @minus
2362 @item
2363 Cortex-M3 CPU core.
2364 @item
2365 64k Flash and 8k SRAM.
2366 @item
2367 Timers, UARTs, ADC and I@math{^2}C interface.
2368 @item
2369 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2370 @end itemize
2371
2372 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2373 devices:
2374
2375 @itemize @minus
2376 @item
2377 Cortex-M3 CPU core.
2378 @item
2379 256k Flash and 64k SRAM.
2380 @item
2381 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2382 @item
2383 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2384 @end itemize
2385
2386 A Linux 2.6 test image is available on the QEMU web site. More
2387 information is available in the QEMU mailing-list archive.
2388
2389 @node ColdFire System emulator
2390 @section ColdFire System emulator
2391
2392 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2393 The emulator is able to boot a uClinux kernel.
2394
2395 The M5208EVB emulation includes the following devices:
2396
2397 @itemize @minus
2398 @item
2399 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2400 @item
2401 Three Two on-chip UARTs.
2402 @item
2403 Fast Ethernet Controller (FEC)
2404 @end itemize
2405
2406 The AN5206 emulation includes the following devices:
2407
2408 @itemize @minus
2409 @item
2410 MCF5206 ColdFire V2 Microprocessor.
2411 @item
2412 Two on-chip UARTs.
2413 @end itemize
2414
2415 @node QEMU User space emulator
2416 @chapter QEMU User space emulator
2417
2418 @menu
2419 * Supported Operating Systems ::
2420 * Linux User space emulator::
2421 * Mac OS X/Darwin User space emulator ::
2422 @end menu
2423
2424 @node Supported Operating Systems
2425 @section Supported Operating Systems
2426
2427 The following OS are supported in user space emulation:
2428
2429 @itemize @minus
2430 @item
2431 Linux (referred as qemu-linux-user)
2432 @item
2433 Mac OS X/Darwin (referred as qemu-darwin-user)
2434 @end itemize
2435
2436 @node Linux User space emulator
2437 @section Linux User space emulator
2438
2439 @menu
2440 * Quick Start::
2441 * Wine launch::
2442 * Command line options::
2443 * Other binaries::
2444 @end menu
2445
2446 @node Quick Start
2447 @subsection Quick Start
2448
2449 In order to launch a Linux process, QEMU needs the process executable
2450 itself and all the target (x86) dynamic libraries used by it.
2451
2452 @itemize
2453
2454 @item On x86, you can just try to launch any process by using the native
2455 libraries:
2456
2457 @example
2458 qemu-i386 -L / /bin/ls
2459 @end example
2460
2461 @code{-L /} tells that the x86 dynamic linker must be searched with a
2462 @file{/} prefix.
2463
2464 @item Since QEMU is also a linux process, you can launch qemu with
2465 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2466
2467 @example
2468 qemu-i386 -L / qemu-i386 -L / /bin/ls
2469 @end example
2470
2471 @item On non x86 CPUs, you need first to download at least an x86 glibc
2472 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2473 @code{LD_LIBRARY_PATH} is not set:
2474
2475 @example
2476 unset LD_LIBRARY_PATH
2477 @end example
2478
2479 Then you can launch the precompiled @file{ls} x86 executable:
2480
2481 @example
2482 qemu-i386 tests/i386/ls
2483 @end example
2484 You can look at @file{qemu-binfmt-conf.sh} so that
2485 QEMU is automatically launched by the Linux kernel when you try to
2486 launch x86 executables. It requires the @code{binfmt_misc} module in the
2487 Linux kernel.
2488
2489 @item The x86 version of QEMU is also included. You can try weird things such as:
2490 @example
2491 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2492           /usr/local/qemu-i386/bin/ls-i386
2493 @end example
2494
2495 @end itemize
2496
2497 @node Wine launch
2498 @subsection Wine launch
2499
2500 @itemize
2501
2502 @item Ensure that you have a working QEMU with the x86 glibc
2503 distribution (see previous section). In order to verify it, you must be
2504 able to do:
2505
2506 @example
2507 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2508 @end example
2509
2510 @item Download the binary x86 Wine install
2511 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2512
2513 @item Configure Wine on your account. Look at the provided script
2514 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2515 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2516
2517 @item Then you can try the example @file{putty.exe}:
2518
2519 @example
2520 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2521           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2522 @end example
2523
2524 @end itemize
2525
2526 @node Command line options
2527 @subsection Command line options
2528
2529 @example
2530 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2531 @end example
2532
2533 @table @option
2534 @item -h
2535 Print the help
2536 @item -L path
2537 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2538 @item -s size
2539 Set the x86 stack size in bytes (default=524288)
2540 @end table
2541
2542 Debug options:
2543
2544 @table @option
2545 @item -d
2546 Activate log (logfile=/tmp/qemu.log)
2547 @item -p pagesize
2548 Act as if the host page size was 'pagesize' bytes
2549 @end table
2550
2551 Environment variables:
2552
2553 @table @env
2554 @item QEMU_STRACE
2555 Print system calls and arguments similar to the 'strace' program
2556 (NOTE: the actual 'strace' program will not work because the user
2557 space emulator hasn't implemented ptrace).  At the moment this is
2558 incomplete.  All system calls that don't have a specific argument
2559 format are printed with information for six arguments.  Many
2560 flag-style arguments don't have decoders and will show up as numbers.
2561 @end table
2562
2563 @node Other binaries
2564 @subsection Other binaries
2565
2566 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2567 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2568 configurations), and arm-uclinux bFLT format binaries.
2569
2570 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2571 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2572 coldfire uClinux bFLT format binaries.
2573
2574 The binary format is detected automatically.
2575
2576 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2577 (Sparc64 CPU, 32 bit ABI).
2578
2579 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2580 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2581
2582 @node Mac OS X/Darwin User space emulator
2583 @section Mac OS X/Darwin User space emulator
2584
2585 @menu
2586 * Mac OS X/Darwin Status::
2587 * Mac OS X/Darwin Quick Start::
2588 * Mac OS X/Darwin Command line options::
2589 @end menu
2590
2591 @node Mac OS X/Darwin Status
2592 @subsection Mac OS X/Darwin Status
2593
2594 @itemize @minus
2595 @item
2596 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2597 @item
2598 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2599 @item
2600 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2601 @item
2602 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2603 @end itemize
2604
2605 [1] If you're host commpage can be executed by qemu.
2606
2607 @node Mac OS X/Darwin Quick Start
2608 @subsection Quick Start
2609
2610 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2611 itself and all the target dynamic libraries used by it. If you don't have the FAT
2612 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2613 CD or compile them by hand.
2614
2615 @itemize
2616
2617 @item On x86, you can just try to launch any process by using the native
2618 libraries:
2619
2620 @example
2621 qemu-i386 /bin/ls
2622 @end example
2623
2624 or to run the ppc version of the executable:
2625
2626 @example
2627 qemu-ppc /bin/ls
2628 @end example
2629
2630 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2631 are installed:
2632
2633 @example
2634 qemu-i386 -L /opt/x86_root/ /bin/ls
2635 @end example
2636
2637 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2638 @file{/opt/x86_root/usr/bin/dyld}.
2639
2640 @end itemize
2641
2642 @node Mac OS X/Darwin Command line options
2643 @subsection Command line options
2644
2645 @example
2646 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2647 @end example
2648
2649 @table @option
2650 @item -h
2651 Print the help
2652 @item -L path
2653 Set the library root path (default=/)
2654 @item -s size
2655 Set the stack size in bytes (default=524288)
2656 @end table
2657
2658 Debug options:
2659
2660 @table @option
2661 @item -d
2662 Activate log (logfile=/tmp/qemu.log)
2663 @item -p pagesize
2664 Act as if the host page size was 'pagesize' bytes
2665 @end table
2666
2667 @node compilation
2668 @chapter Compilation from the sources
2669
2670 @menu
2671 * Linux/Unix::
2672 * Windows::
2673 * Cross compilation for Windows with Linux::
2674 * Mac OS X::
2675 @end menu
2676
2677 @node Linux/Unix
2678 @section Linux/Unix
2679
2680 @subsection Compilation
2681
2682 First you must decompress the sources:
2683 @example
2684 cd /tmp
2685 tar zxvf qemu-x.y.z.tar.gz
2686 cd qemu-x.y.z
2687 @end example
2688
2689 Then you configure QEMU and build it (usually no options are needed):
2690 @example
2691 ./configure
2692 make
2693 @end example
2694
2695 Then type as root user:
2696 @example
2697 make install
2698 @end example
2699 to install QEMU in @file{/usr/local}.
2700
2701 @subsection GCC version
2702
2703 In order to compile QEMU successfully, it is very important that you
2704 have the right tools. The most important one is gcc. On most hosts and
2705 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2706 Linux distribution includes a gcc 4.x compiler, you can usually
2707 install an older version (it is invoked by @code{gcc32} or
2708 @code{gcc34}). The QEMU configure script automatically probes for
2709 these older versions so that usually you don't have to do anything.
2710
2711 @node Windows
2712 @section Windows
2713
2714 @itemize
2715 @item Install the current versions of MSYS and MinGW from
2716 @url{http://www.mingw.org/}. You can find detailed installation
2717 instructions in the download section and the FAQ.
2718
2719 @item Download
2720 the MinGW development library of SDL 1.2.x
2721 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2722 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2723 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2724 directory. Edit the @file{sdl-config} script so that it gives the
2725 correct SDL directory when invoked.
2726
2727 @item Extract the current version of QEMU.
2728
2729 @item Start the MSYS shell (file @file{msys.bat}).
2730
2731 @item Change to the QEMU directory. Launch @file{./configure} and
2732 @file{make}.  If you have problems using SDL, verify that
2733 @file{sdl-config} can be launched from the MSYS command line.
2734
2735 @item You can install QEMU in @file{Program Files/Qemu} by typing
2736 @file{make install}. Don't forget to copy @file{SDL.dll} in
2737 @file{Program Files/Qemu}.
2738
2739 @end itemize
2740
2741 @node Cross compilation for Windows with Linux
2742 @section Cross compilation for Windows with Linux
2743
2744 @itemize
2745 @item
2746 Install the MinGW cross compilation tools available at
2747 @url{http://www.mingw.org/}.
2748
2749 @item
2750 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2751 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2752 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2753 the QEMU configuration script.
2754
2755 @item
2756 Configure QEMU for Windows cross compilation:
2757 @example
2758 ./configure --enable-mingw32
2759 @end example
2760 If necessary, you can change the cross-prefix according to the prefix
2761 chosen for the MinGW tools with --cross-prefix. You can also use
2762 --prefix to set the Win32 install path.
2763
2764 @item You can install QEMU in the installation directory by typing
2765 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2766 installation directory.
2767
2768 @end itemize
2769
2770 Note: Currently, Wine does not seem able to launch
2771 QEMU for Win32.
2772
2773 @node Mac OS X
2774 @section Mac OS X
2775
2776 The Mac OS X patches are not fully merged in QEMU, so you should look
2777 at the QEMU mailing list archive to have all the necessary
2778 information.
2779
2780 @node Index
2781 @chapter Index
2782 @printindex cp
2783
2784 @bye