Merge branch 'master' of /home/nchip/public_html/qemu into garage-push
[qemu] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19  */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #include "qemu-common.h"
24 #include "cpu-common.h"
25
26 /* some important defines:
27  *
28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29  * memory accesses.
30  *
31  * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32  * otherwise little endian.
33  *
34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35  *
36  * TARGET_WORDS_BIGENDIAN : same for target cpu
37  */
38
39 #include "softfloat.h"
40
41 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42 #define BSWAP_NEEDED
43 #endif
44
45 #ifdef BSWAP_NEEDED
46
47 static inline uint16_t tswap16(uint16_t s)
48 {
49     return bswap16(s);
50 }
51
52 static inline uint32_t tswap32(uint32_t s)
53 {
54     return bswap32(s);
55 }
56
57 static inline uint64_t tswap64(uint64_t s)
58 {
59     return bswap64(s);
60 }
61
62 static inline void tswap16s(uint16_t *s)
63 {
64     *s = bswap16(*s);
65 }
66
67 static inline void tswap32s(uint32_t *s)
68 {
69     *s = bswap32(*s);
70 }
71
72 static inline void tswap64s(uint64_t *s)
73 {
74     *s = bswap64(*s);
75 }
76
77 #else
78
79 static inline uint16_t tswap16(uint16_t s)
80 {
81     return s;
82 }
83
84 static inline uint32_t tswap32(uint32_t s)
85 {
86     return s;
87 }
88
89 static inline uint64_t tswap64(uint64_t s)
90 {
91     return s;
92 }
93
94 static inline void tswap16s(uint16_t *s)
95 {
96 }
97
98 static inline void tswap32s(uint32_t *s)
99 {
100 }
101
102 static inline void tswap64s(uint64_t *s)
103 {
104 }
105
106 #endif
107
108 #if TARGET_LONG_SIZE == 4
109 #define tswapl(s) tswap32(s)
110 #define tswapls(s) tswap32s((uint32_t *)(s))
111 #define bswaptls(s) bswap32s(s)
112 #else
113 #define tswapl(s) tswap64(s)
114 #define tswapls(s) tswap64s((uint64_t *)(s))
115 #define bswaptls(s) bswap64s(s)
116 #endif
117
118 typedef union {
119     float32 f;
120     uint32_t l;
121 } CPU_FloatU;
122
123 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
124    endian ! */
125 typedef union {
126     float64 d;
127 #if defined(WORDS_BIGENDIAN) \
128     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
129     struct {
130         uint32_t upper;
131         uint32_t lower;
132     } l;
133 #else
134     struct {
135         uint32_t lower;
136         uint32_t upper;
137     } l;
138 #endif
139     uint64_t ll;
140 } CPU_DoubleU;
141
142 #ifdef TARGET_SPARC
143 typedef union {
144     float128 q;
145 #if defined(WORDS_BIGENDIAN) \
146     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147     struct {
148         uint32_t upmost;
149         uint32_t upper;
150         uint32_t lower;
151         uint32_t lowest;
152     } l;
153     struct {
154         uint64_t upper;
155         uint64_t lower;
156     } ll;
157 #else
158     struct {
159         uint32_t lowest;
160         uint32_t lower;
161         uint32_t upper;
162         uint32_t upmost;
163     } l;
164     struct {
165         uint64_t lower;
166         uint64_t upper;
167     } ll;
168 #endif
169 } CPU_QuadU;
170 #endif
171
172 /* CPU memory access without any memory or io remapping */
173
174 /*
175  * the generic syntax for the memory accesses is:
176  *
177  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
178  *
179  * store: st{type}{size}{endian}_{access_type}(ptr, val)
180  *
181  * type is:
182  * (empty): integer access
183  *   f    : float access
184  *
185  * sign is:
186  * (empty): for floats or 32 bit size
187  *   u    : unsigned
188  *   s    : signed
189  *
190  * size is:
191  *   b: 8 bits
192  *   w: 16 bits
193  *   l: 32 bits
194  *   q: 64 bits
195  *
196  * endian is:
197  * (empty): target cpu endianness or 8 bit access
198  *   r    : reversed target cpu endianness (not implemented yet)
199  *   be   : big endian (not implemented yet)
200  *   le   : little endian (not implemented yet)
201  *
202  * access_type is:
203  *   raw    : host memory access
204  *   user   : user mode access using soft MMU
205  *   kernel : kernel mode access using soft MMU
206  */
207 static inline int ldub_p(const void *ptr)
208 {
209     return *(uint8_t *)ptr;
210 }
211
212 static inline int ldsb_p(const void *ptr)
213 {
214     return *(int8_t *)ptr;
215 }
216
217 static inline void stb_p(void *ptr, int v)
218 {
219     *(uint8_t *)ptr = v;
220 }
221
222 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
223    kernel handles unaligned load/stores may give better results, but
224    it is a system wide setting : bad */
225 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
226
227 /* conservative code for little endian unaligned accesses */
228 static inline int lduw_le_p(const void *ptr)
229 {
230 #ifdef _ARCH_PPC
231     int val;
232     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
233     return val;
234 #else
235     const uint8_t *p = ptr;
236     return p[0] | (p[1] << 8);
237 #endif
238 }
239
240 static inline int ldsw_le_p(const void *ptr)
241 {
242 #ifdef _ARCH_PPC
243     int val;
244     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
245     return (int16_t)val;
246 #else
247     const uint8_t *p = ptr;
248     return (int16_t)(p[0] | (p[1] << 8));
249 #endif
250 }
251
252 static inline int ldl_le_p(const void *ptr)
253 {
254 #ifdef _ARCH_PPC
255     int val;
256     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
257     return val;
258 #else
259     const uint8_t *p = ptr;
260     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
261 #endif
262 }
263
264 static inline uint64_t ldq_le_p(const void *ptr)
265 {
266     const uint8_t *p = ptr;
267     uint32_t v1, v2;
268     v1 = ldl_le_p(p);
269     v2 = ldl_le_p(p + 4);
270     return v1 | ((uint64_t)v2 << 32);
271 }
272
273 static inline void stw_le_p(void *ptr, int v)
274 {
275 #ifdef _ARCH_PPC
276     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
277 #else
278     uint8_t *p = ptr;
279     p[0] = v;
280     p[1] = v >> 8;
281 #endif
282 }
283
284 static inline void stl_le_p(void *ptr, int v)
285 {
286 #ifdef _ARCH_PPC
287     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
288 #else
289     uint8_t *p = ptr;
290     p[0] = v;
291     p[1] = v >> 8;
292     p[2] = v >> 16;
293     p[3] = v >> 24;
294 #endif
295 }
296
297 static inline void stq_le_p(void *ptr, uint64_t v)
298 {
299     uint8_t *p = ptr;
300     stl_le_p(p, (uint32_t)v);
301     stl_le_p(p + 4, v >> 32);
302 }
303
304 /* float access */
305
306 static inline float32 ldfl_le_p(const void *ptr)
307 {
308     union {
309         float32 f;
310         uint32_t i;
311     } u;
312     u.i = ldl_le_p(ptr);
313     return u.f;
314 }
315
316 static inline void stfl_le_p(void *ptr, float32 v)
317 {
318     union {
319         float32 f;
320         uint32_t i;
321     } u;
322     u.f = v;
323     stl_le_p(ptr, u.i);
324 }
325
326 static inline float64 ldfq_le_p(const void *ptr)
327 {
328     CPU_DoubleU u;
329     u.l.lower = ldl_le_p(ptr);
330     u.l.upper = ldl_le_p(ptr + 4);
331     return u.d;
332 }
333
334 static inline void stfq_le_p(void *ptr, float64 v)
335 {
336     CPU_DoubleU u;
337     u.d = v;
338     stl_le_p(ptr, u.l.lower);
339     stl_le_p(ptr + 4, u.l.upper);
340 }
341
342 #else
343
344 static inline int lduw_le_p(const void *ptr)
345 {
346     return *(uint16_t *)ptr;
347 }
348
349 static inline int ldsw_le_p(const void *ptr)
350 {
351     return *(int16_t *)ptr;
352 }
353
354 static inline int ldl_le_p(const void *ptr)
355 {
356     return *(uint32_t *)ptr;
357 }
358
359 static inline uint64_t ldq_le_p(const void *ptr)
360 {
361     return *(uint64_t *)ptr;
362 }
363
364 static inline void stw_le_p(void *ptr, int v)
365 {
366     *(uint16_t *)ptr = v;
367 }
368
369 static inline void stl_le_p(void *ptr, int v)
370 {
371     *(uint32_t *)ptr = v;
372 }
373
374 static inline void stq_le_p(void *ptr, uint64_t v)
375 {
376     *(uint64_t *)ptr = v;
377 }
378
379 /* float access */
380
381 static inline float32 ldfl_le_p(const void *ptr)
382 {
383     return *(float32 *)ptr;
384 }
385
386 static inline float64 ldfq_le_p(const void *ptr)
387 {
388     return *(float64 *)ptr;
389 }
390
391 static inline void stfl_le_p(void *ptr, float32 v)
392 {
393     *(float32 *)ptr = v;
394 }
395
396 static inline void stfq_le_p(void *ptr, float64 v)
397 {
398     *(float64 *)ptr = v;
399 }
400 #endif
401
402 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
403
404 static inline int lduw_be_p(const void *ptr)
405 {
406 #if defined(__i386__)
407     int val;
408     asm volatile ("movzwl %1, %0\n"
409                   "xchgb %b0, %h0\n"
410                   : "=q" (val)
411                   : "m" (*(uint16_t *)ptr));
412     return val;
413 #else
414     const uint8_t *b = ptr;
415     return ((b[0] << 8) | b[1]);
416 #endif
417 }
418
419 static inline int ldsw_be_p(const void *ptr)
420 {
421 #if defined(__i386__)
422     int val;
423     asm volatile ("movzwl %1, %0\n"
424                   "xchgb %b0, %h0\n"
425                   : "=q" (val)
426                   : "m" (*(uint16_t *)ptr));
427     return (int16_t)val;
428 #else
429     const uint8_t *b = ptr;
430     return (int16_t)((b[0] << 8) | b[1]);
431 #endif
432 }
433
434 static inline int ldl_be_p(const void *ptr)
435 {
436 #if defined(__i386__) || defined(__x86_64__)
437     int val;
438     asm volatile ("movl %1, %0\n"
439                   "bswap %0\n"
440                   : "=r" (val)
441                   : "m" (*(uint32_t *)ptr));
442     return val;
443 #else
444     const uint8_t *b = ptr;
445     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
446 #endif
447 }
448
449 static inline uint64_t ldq_be_p(const void *ptr)
450 {
451     uint32_t a,b;
452     a = ldl_be_p(ptr);
453     b = ldl_be_p((uint8_t *)ptr + 4);
454     return (((uint64_t)a<<32)|b);
455 }
456
457 static inline void stw_be_p(void *ptr, int v)
458 {
459 #if defined(__i386__)
460     asm volatile ("xchgb %b0, %h0\n"
461                   "movw %w0, %1\n"
462                   : "=q" (v)
463                   : "m" (*(uint16_t *)ptr), "0" (v));
464 #else
465     uint8_t *d = (uint8_t *) ptr;
466     d[0] = v >> 8;
467     d[1] = v;
468 #endif
469 }
470
471 static inline void stl_be_p(void *ptr, int v)
472 {
473 #if defined(__i386__) || defined(__x86_64__)
474     asm volatile ("bswap %0\n"
475                   "movl %0, %1\n"
476                   : "=r" (v)
477                   : "m" (*(uint32_t *)ptr), "0" (v));
478 #else
479     uint8_t *d = (uint8_t *) ptr;
480     d[0] = v >> 24;
481     d[1] = v >> 16;
482     d[2] = v >> 8;
483     d[3] = v;
484 #endif
485 }
486
487 static inline void stq_be_p(void *ptr, uint64_t v)
488 {
489     stl_be_p(ptr, v >> 32);
490     stl_be_p((uint8_t *)ptr + 4, v);
491 }
492
493 /* float access */
494
495 static inline float32 ldfl_be_p(const void *ptr)
496 {
497     union {
498         float32 f;
499         uint32_t i;
500     } u;
501     u.i = ldl_be_p(ptr);
502     return u.f;
503 }
504
505 static inline void stfl_be_p(void *ptr, float32 v)
506 {
507     union {
508         float32 f;
509         uint32_t i;
510     } u;
511     u.f = v;
512     stl_be_p(ptr, u.i);
513 }
514
515 static inline float64 ldfq_be_p(const void *ptr)
516 {
517     CPU_DoubleU u;
518     u.l.upper = ldl_be_p(ptr);
519     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
520     return u.d;
521 }
522
523 static inline void stfq_be_p(void *ptr, float64 v)
524 {
525     CPU_DoubleU u;
526     u.d = v;
527     stl_be_p(ptr, u.l.upper);
528     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
529 }
530
531 #else
532
533 static inline int lduw_be_p(const void *ptr)
534 {
535     return *(uint16_t *)ptr;
536 }
537
538 static inline int ldsw_be_p(const void *ptr)
539 {
540     return *(int16_t *)ptr;
541 }
542
543 static inline int ldl_be_p(const void *ptr)
544 {
545     return *(uint32_t *)ptr;
546 }
547
548 static inline uint64_t ldq_be_p(const void *ptr)
549 {
550     return *(uint64_t *)ptr;
551 }
552
553 static inline void stw_be_p(void *ptr, int v)
554 {
555     *(uint16_t *)ptr = v;
556 }
557
558 static inline void stl_be_p(void *ptr, int v)
559 {
560     *(uint32_t *)ptr = v;
561 }
562
563 static inline void stq_be_p(void *ptr, uint64_t v)
564 {
565     *(uint64_t *)ptr = v;
566 }
567
568 /* float access */
569
570 static inline float32 ldfl_be_p(const void *ptr)
571 {
572     return *(float32 *)ptr;
573 }
574
575 static inline float64 ldfq_be_p(const void *ptr)
576 {
577     return *(float64 *)ptr;
578 }
579
580 static inline void stfl_be_p(void *ptr, float32 v)
581 {
582     *(float32 *)ptr = v;
583 }
584
585 static inline void stfq_be_p(void *ptr, float64 v)
586 {
587     *(float64 *)ptr = v;
588 }
589
590 #endif
591
592 /* target CPU memory access functions */
593 #if defined(TARGET_WORDS_BIGENDIAN)
594 #define lduw_p(p) lduw_be_p(p)
595 #define ldsw_p(p) ldsw_be_p(p)
596 #define ldl_p(p) ldl_be_p(p)
597 #define ldq_p(p) ldq_be_p(p)
598 #define ldfl_p(p) ldfl_be_p(p)
599 #define ldfq_p(p) ldfq_be_p(p)
600 #define stw_p(p, v) stw_be_p(p, v)
601 #define stl_p(p, v) stl_be_p(p, v)
602 #define stq_p(p, v) stq_be_p(p, v)
603 #define stfl_p(p, v) stfl_be_p(p, v)
604 #define stfq_p(p, v) stfq_be_p(p, v)
605 #else
606 #define lduw_p(p) lduw_le_p(p)
607 #define ldsw_p(p) ldsw_le_p(p)
608 #define ldl_p(p) ldl_le_p(p)
609 #define ldq_p(p) ldq_le_p(p)
610 #define ldfl_p(p) ldfl_le_p(p)
611 #define ldfq_p(p) ldfq_le_p(p)
612 #define stw_p(p, v) stw_le_p(p, v)
613 #define stl_p(p, v) stl_le_p(p, v)
614 #define stq_p(p, v) stq_le_p(p, v)
615 #define stfl_p(p, v) stfl_le_p(p, v)
616 #define stfq_p(p, v) stfq_le_p(p, v)
617 #endif
618
619 /* MMU memory access macros */
620
621 #if defined(CONFIG_USER_ONLY)
622 #include <assert.h>
623 #include "qemu-types.h"
624
625 /* On some host systems the guest address space is reserved on the host.
626  * This allows the guest address space to be offset to a convenient location.
627  */
628 #if defined(CONFIG_USE_GUEST_BASE)
629 extern unsigned long guest_base;
630 #define GUEST_BASE guest_base
631 #else
632 #define GUEST_BASE 0
633 #endif
634
635 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637 #define h2g(x) ({ \
638     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639     /* Check if given address fits target address space */ \
640     assert(__ret == (abi_ulong)__ret); \
641     (abi_ulong)__ret; \
642 })
643 #define h2g_valid(x) ({ \
644     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645     (__guest == (abi_ulong)__guest); \
646 })
647
648 #define saddr(x) g2h(x)
649 #define laddr(x) g2h(x)
650
651 #else /* !CONFIG_USER_ONLY */
652 /* NOTE: we use double casts if pointers and target_ulong have
653    different sizes */
654 #define saddr(x) (uint8_t *)(long)(x)
655 #define laddr(x) (uint8_t *)(long)(x)
656 #endif
657
658 #define ldub_raw(p) ldub_p(laddr((p)))
659 #define ldsb_raw(p) ldsb_p(laddr((p)))
660 #define lduw_raw(p) lduw_p(laddr((p)))
661 #define ldsw_raw(p) ldsw_p(laddr((p)))
662 #define ldl_raw(p) ldl_p(laddr((p)))
663 #define ldq_raw(p) ldq_p(laddr((p)))
664 #define ldfl_raw(p) ldfl_p(laddr((p)))
665 #define ldfq_raw(p) ldfq_p(laddr((p)))
666 #define stb_raw(p, v) stb_p(saddr((p)), v)
667 #define stw_raw(p, v) stw_p(saddr((p)), v)
668 #define stl_raw(p, v) stl_p(saddr((p)), v)
669 #define stq_raw(p, v) stq_p(saddr((p)), v)
670 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
671 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
672
673
674 #if defined(CONFIG_USER_ONLY)
675
676 /* if user mode, no other memory access functions */
677 #define ldub(p) ldub_raw(p)
678 #define ldsb(p) ldsb_raw(p)
679 #define lduw(p) lduw_raw(p)
680 #define ldsw(p) ldsw_raw(p)
681 #define ldl(p) ldl_raw(p)
682 #define ldq(p) ldq_raw(p)
683 #define ldfl(p) ldfl_raw(p)
684 #define ldfq(p) ldfq_raw(p)
685 #define stb(p, v) stb_raw(p, v)
686 #define stw(p, v) stw_raw(p, v)
687 #define stl(p, v) stl_raw(p, v)
688 #define stq(p, v) stq_raw(p, v)
689 #define stfl(p, v) stfl_raw(p, v)
690 #define stfq(p, v) stfq_raw(p, v)
691
692 #define ldub_code(p) ldub_raw(p)
693 #define ldsb_code(p) ldsb_raw(p)
694 #define lduw_code(p) lduw_raw(p)
695 #define ldsw_code(p) ldsw_raw(p)
696 #define ldl_code(p) ldl_raw(p)
697 #define ldq_code(p) ldq_raw(p)
698
699 #define ldub_kernel(p) ldub_raw(p)
700 #define ldsb_kernel(p) ldsb_raw(p)
701 #define lduw_kernel(p) lduw_raw(p)
702 #define ldsw_kernel(p) ldsw_raw(p)
703 #define ldl_kernel(p) ldl_raw(p)
704 #define ldq_kernel(p) ldq_raw(p)
705 #define ldfl_kernel(p) ldfl_raw(p)
706 #define ldfq_kernel(p) ldfq_raw(p)
707 #define stb_kernel(p, v) stb_raw(p, v)
708 #define stw_kernel(p, v) stw_raw(p, v)
709 #define stl_kernel(p, v) stl_raw(p, v)
710 #define stq_kernel(p, v) stq_raw(p, v)
711 #define stfl_kernel(p, v) stfl_raw(p, v)
712 #define stfq_kernel(p, vt) stfq_raw(p, v)
713
714 #endif /* defined(CONFIG_USER_ONLY) */
715
716 /* page related stuff */
717
718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
721
722 /* ??? These should be the larger of unsigned long and target_ulong.  */
723 extern unsigned long qemu_real_host_page_size;
724 extern unsigned long qemu_host_page_bits;
725 extern unsigned long qemu_host_page_size;
726 extern unsigned long qemu_host_page_mask;
727
728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
729
730 /* same as PROT_xxx */
731 #define PAGE_READ      0x0001
732 #define PAGE_WRITE     0x0002
733 #define PAGE_EXEC      0x0004
734 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735 #define PAGE_VALID     0x0008
736 /* original state of the write flag (used when tracking self-modifying
737    code */
738 #define PAGE_WRITE_ORG 0x0010
739 #define PAGE_RESERVED  0x0020
740
741 void page_dump(FILE *f);
742 int walk_memory_regions(void *,
743     int (*fn)(void *, unsigned long, unsigned long, unsigned long));
744 int page_get_flags(target_ulong address);
745 void page_set_flags(target_ulong start, target_ulong end, int flags);
746 int page_check_range(target_ulong start, target_ulong len, int flags);
747
748 void cpu_exec_init_all(unsigned long tb_size);
749 CPUState *cpu_copy(CPUState *env);
750
751 void cpu_dump_state(CPUState *env, FILE *f,
752                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
753                     int flags);
754 void cpu_dump_statistics (CPUState *env, FILE *f,
755                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
756                           int flags);
757
758 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
759     __attribute__ ((__format__ (__printf__, 2, 3)));
760 extern CPUState *first_cpu;
761 extern CPUState *cpu_single_env;
762 extern int64_t qemu_icount;
763 extern int use_icount;
764
765 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
766 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
767 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
768 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
769 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
770 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
771 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
772 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
773 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
774
775 void cpu_interrupt(CPUState *s, int mask);
776 void cpu_reset_interrupt(CPUState *env, int mask);
777
778 void cpu_exit(CPUState *s);
779
780 int qemu_cpu_has_work(CPUState *env);
781
782 /* Breakpoint/watchpoint flags */
783 #define BP_MEM_READ           0x01
784 #define BP_MEM_WRITE          0x02
785 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
786 #define BP_STOP_BEFORE_ACCESS 0x04
787 #define BP_WATCHPOINT_HIT     0x08
788 #define BP_GDB                0x10
789 #define BP_CPU                0x20
790
791 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
792                           CPUBreakpoint **breakpoint);
793 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
794 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
795 void cpu_breakpoint_remove_all(CPUState *env, int mask);
796 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
797                           int flags, CPUWatchpoint **watchpoint);
798 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
799                           target_ulong len, int flags);
800 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
801 void cpu_watchpoint_remove_all(CPUState *env, int mask);
802
803 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
804 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
805 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
806
807 void cpu_single_step(CPUState *env, int enabled);
808 void cpu_reset(CPUState *s);
809
810 /* Return the physical page corresponding to a virtual one. Use it
811    only for debugging because no protection checks are done. Return -1
812    if no page found. */
813 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
814
815 #define CPU_LOG_TB_OUT_ASM (1 << 0)
816 #define CPU_LOG_TB_IN_ASM  (1 << 1)
817 #define CPU_LOG_TB_OP      (1 << 2)
818 #define CPU_LOG_TB_OP_OPT  (1 << 3)
819 #define CPU_LOG_INT        (1 << 4)
820 #define CPU_LOG_EXEC       (1 << 5)
821 #define CPU_LOG_PCALL      (1 << 6)
822 #define CPU_LOG_IOPORT     (1 << 7)
823 #define CPU_LOG_TB_CPU     (1 << 8)
824 #define CPU_LOG_RESET      (1 << 9)
825
826 /* define log items */
827 typedef struct CPULogItem {
828     int mask;
829     const char *name;
830     const char *help;
831 } CPULogItem;
832
833 extern const CPULogItem cpu_log_items[];
834
835 void cpu_set_log(int log_flags);
836 void cpu_set_log_filename(const char *filename);
837 int cpu_str_to_log_mask(const char *str);
838
839 /* IO ports API */
840
841 /* NOTE: as these functions may be even used when there is an isa
842    brige on non x86 targets, we always defined them */
843 #ifndef NO_CPU_IO_DEFS
844 void cpu_outb(CPUState *env, int addr, int val);
845 void cpu_outw(CPUState *env, int addr, int val);
846 void cpu_outl(CPUState *env, int addr, int val);
847 int cpu_inb(CPUState *env, int addr);
848 int cpu_inw(CPUState *env, int addr);
849 int cpu_inl(CPUState *env, int addr);
850 #endif
851
852 /* memory API */
853
854 extern int phys_ram_fd;
855 extern uint8_t *phys_ram_dirty;
856 extern ram_addr_t ram_size;
857 extern ram_addr_t last_ram_offset;
858
859 /* physical memory access */
860
861 /* MMIO pages are identified by a combination of an IO device index and
862    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
863    so only a limited number of ids are avaiable.  */
864
865 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
866
867 /* Flags stored in the low bits of the TLB virtual address.  These are
868    defined so that fast path ram access is all zeros.  */
869 /* Zero if TLB entry is valid.  */
870 #define TLB_INVALID_MASK   (1 << 3)
871 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
872    contain the page physical address.  */
873 #define TLB_NOTDIRTY    (1 << 4)
874 /* Set if TLB entry is an IO callback.  */
875 #define TLB_MMIO        (1 << 5)
876
877 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
878                         uint8_t *buf, int len, int is_write);
879
880 #define VGA_DIRTY_FLAG       0x01
881 #define CODE_DIRTY_FLAG      0x02
882 #define KQEMU_DIRTY_FLAG     0x04
883 #define MIGRATION_DIRTY_FLAG 0x08
884
885 /* read dirty bit (return 0 or 1) */
886 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
887 {
888     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
889 }
890
891 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
892                                                 int dirty_flags)
893 {
894     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
895 }
896
897 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
898 {
899     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
900 }
901
902 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
903                                      int dirty_flags);
904 void cpu_tlb_update_dirty(CPUState *env);
905
906 int cpu_physical_memory_set_dirty_tracking(int enable);
907
908 int cpu_physical_memory_get_dirty_tracking(void);
909
910 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
911                                    target_phys_addr_t end_addr);
912
913 void dump_exec_info(FILE *f,
914                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
915
916 /* Coalesced MMIO regions are areas where write operations can be reordered.
917  * This usually implies that write operations are side-effect free.  This allows
918  * batching which can make a major impact on performance when using
919  * virtualization.
920  */
921 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
922
923 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
924
925 /*******************************************/
926 /* host CPU ticks (if available) */
927
928 #if defined(_ARCH_PPC)
929
930 static inline int64_t cpu_get_real_ticks(void)
931 {
932     int64_t retval;
933 #ifdef _ARCH_PPC64
934     /* This reads timebase in one 64bit go and includes Cell workaround from:
935        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
936      */
937     __asm__ __volatile__ (
938         "mftb    %0\n\t"
939         "cmpwi   %0,0\n\t"
940         "beq-    $-8"
941         : "=r" (retval));
942 #else
943     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
944     unsigned long junk;
945     __asm__ __volatile__ (
946         "mftbu   %1\n\t"
947         "mftb    %L0\n\t"
948         "mftbu   %0\n\t"
949         "cmpw    %0,%1\n\t"
950         "bne     $-16"
951         : "=r" (retval), "=r" (junk));
952 #endif
953     return retval;
954 }
955
956 #elif defined(__i386__)
957
958 static inline int64_t cpu_get_real_ticks(void)
959 {
960     int64_t val;
961     asm volatile ("rdtsc" : "=A" (val));
962     return val;
963 }
964
965 #elif defined(__x86_64__)
966
967 static inline int64_t cpu_get_real_ticks(void)
968 {
969     uint32_t low,high;
970     int64_t val;
971     asm volatile("rdtsc" : "=a" (low), "=d" (high));
972     val = high;
973     val <<= 32;
974     val |= low;
975     return val;
976 }
977
978 #elif defined(__hppa__)
979
980 static inline int64_t cpu_get_real_ticks(void)
981 {
982     int val;
983     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
984     return val;
985 }
986
987 #elif defined(__ia64)
988
989 static inline int64_t cpu_get_real_ticks(void)
990 {
991         int64_t val;
992         asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
993         return val;
994 }
995
996 #elif defined(__s390__)
997
998 static inline int64_t cpu_get_real_ticks(void)
999 {
1000     int64_t val;
1001     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1002     return val;
1003 }
1004
1005 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1006
1007 static inline int64_t cpu_get_real_ticks (void)
1008 {
1009 #if     defined(_LP64)
1010         uint64_t        rval;
1011         asm volatile("rd %%tick,%0" : "=r"(rval));
1012         return rval;
1013 #else
1014         union {
1015                 uint64_t i64;
1016                 struct {
1017                         uint32_t high;
1018                         uint32_t low;
1019                 }       i32;
1020         } rval;
1021         asm volatile("rd %%tick,%1; srlx %1,32,%0"
1022                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1023         return rval.i64;
1024 #endif
1025 }
1026
1027 #elif defined(__mips__)
1028
1029 static inline int64_t cpu_get_real_ticks(void)
1030 {
1031 #if __mips_isa_rev >= 2
1032     uint32_t count;
1033     static uint32_t cyc_per_count = 0;
1034
1035     if (!cyc_per_count)
1036         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1037
1038     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1039     return (int64_t)(count * cyc_per_count);
1040 #else
1041     /* FIXME */
1042     static int64_t ticks = 0;
1043     return ticks++;
1044 #endif
1045 }
1046
1047 #else
1048 /* The host CPU doesn't have an easily accessible cycle counter.
1049    Just return a monotonically increasing value.  This will be
1050    totally wrong, but hopefully better than nothing.  */
1051 static inline int64_t cpu_get_real_ticks (void)
1052 {
1053     static int64_t ticks = 0;
1054     return ticks++;
1055 }
1056 #endif
1057
1058 /* profiling */
1059 #ifdef CONFIG_PROFILER
1060 static inline int64_t profile_getclock(void)
1061 {
1062     return cpu_get_real_ticks();
1063 }
1064
1065 extern int64_t kqemu_time, kqemu_time_start;
1066 extern int64_t qemu_time, qemu_time_start;
1067 extern int64_t tlb_flush_time;
1068 extern int64_t kqemu_exec_count;
1069 extern int64_t dev_time;
1070 extern int64_t kqemu_ret_int_count;
1071 extern int64_t kqemu_ret_excp_count;
1072 extern int64_t kqemu_ret_intr_count;
1073 #endif
1074
1075 #endif /* CPU_ALL_H */