X-Git-Url: https://vcs.maemo.org/git/?a=blobdiff_plain;f=3rdparty%2Flapack%2Fdsytd2.c;fp=3rdparty%2Flapack%2Fdsytd2.c;h=30095123cc4ad1f1b9aefbcf7872c0208982cd03;hb=e4c14cdbdf2fe805e79cd96ded236f57e7b89060;hp=0000000000000000000000000000000000000000;hpb=454138ff8a20f6edb9b65a910101403d8b520643;p=opencv diff --git a/3rdparty/lapack/dsytd2.c b/3rdparty/lapack/dsytd2.c new file mode 100644 index 0000000..3009512 --- /dev/null +++ b/3rdparty/lapack/dsytd2.c @@ -0,0 +1,293 @@ +#include "clapack.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static doublereal c_b8 = 0.; +static doublereal c_b14 = -1.; + +/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer * + lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + integer i__; + extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, + integer *); + doublereal taui; + extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + integer *); + doublereal alpha; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, + integer *, doublereal *, integer *); + logical upper; + extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + doublereal *, integer *), dlarfg_(integer *, doublereal *, + doublereal *, integer *, doublereal *), xerbla_(char *, integer * +); + + +/* -- LAPACK routine (version 3.1) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */ +/* form T by an orthogonal similarity transformation: Q' * A * Q = T. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the upper or lower triangular part of the */ +/* symmetric matrix A is stored: */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ +/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ +/* n-by-n upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading n-by-n lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ +/* On exit, if UPLO = 'U', the diagonal and first superdiagonal */ +/* of A are overwritten by the corresponding elements of the */ +/* tridiagonal matrix T, and the elements above the first */ +/* superdiagonal, with the array TAU, represent the orthogonal */ +/* matrix Q as a product of elementary reflectors; if UPLO */ +/* = 'L', the diagonal and first subdiagonal of A are over- */ +/* written by the corresponding elements of the tridiagonal */ +/* matrix T, and the elements below the first subdiagonal, with */ +/* the array TAU, represent the orthogonal matrix Q as a product */ +/* of elementary reflectors. See Further Details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* D (output) DOUBLE PRECISION array, dimension (N) */ +/* The diagonal elements of the tridiagonal matrix T: */ +/* D(i) = A(i,i). */ + +/* E (output) DOUBLE PRECISION array, dimension (N-1) */ +/* The off-diagonal elements of the tridiagonal matrix T: */ +/* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ + +/* TAU (output) DOUBLE PRECISION array, dimension (N-1) */ +/* The scalar factors of the elementary reflectors (see Further */ +/* Details). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* If UPLO = 'U', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(n-1) . . . H(2) H(1). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */ +/* A(1:i-1,i+1), and tau in TAU(i). */ + +/* If UPLO = 'L', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(1) H(2) . . . H(n-1). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */ +/* and tau in TAU(i). */ + +/* The contents of A on exit are illustrated by the following examples */ +/* with n = 5: */ + +/* if UPLO = 'U': if UPLO = 'L': */ + +/* ( d e v2 v3 v4 ) ( d ) */ +/* ( d e v3 v4 ) ( e d ) */ +/* ( d e v4 ) ( v1 e d ) */ +/* ( d e ) ( v1 v2 e d ) */ +/* ( d ) ( v1 v2 v3 e d ) */ + +/* where d and e denote diagonal and off-diagonal elements of T, and vi */ +/* denotes an element of the vector defining H(i). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tau; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSYTD2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n <= 0) { + return 0; + } + + if (upper) { + +/* Reduce the upper triangle of A */ + + for (i__ = *n - 1; i__ >= 1; --i__) { + +/* Generate elementary reflector H(i) = I - tau * v * v' */ +/* to annihilate A(1:i-1,i+1) */ + + dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1 + + 1], &c__1, &taui); + e[i__] = a[i__ + (i__ + 1) * a_dim1]; + + if (taui != 0.) { + +/* Apply H(i) from both sides to A(1:i,1:i) */ + + a[i__ + (i__ + 1) * a_dim1] = 1.; + +/* Compute x := tau * A * v storing x in TAU(1:i) */ + + dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * + a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1); + +/* Compute w := x - 1/2 * tau * (x'*v) * v */ + + alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1) + * a_dim1 + 1], &c__1); + daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ + 1], &c__1); + +/* Apply the transformation as a rank-2 update: */ +/* A := A - v * w' - w * v' */ + + dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1, + &tau[1], &c__1, &a[a_offset], lda); + + a[i__ + (i__ + 1) * a_dim1] = e[i__]; + } + d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1]; + tau[i__] = taui; +/* L10: */ + } + d__[1] = a[a_dim1 + 1]; + } else { + +/* Reduce the lower triangle of A */ + + i__1 = *n - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector H(i) = I - tau * v * v' */ +/* to annihilate A(i+2:n,i) */ + + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ * + a_dim1], &c__1, &taui); + e[i__] = a[i__ + 1 + i__ * a_dim1]; + + if (taui != 0.) { + +/* Apply H(i) from both sides to A(i+1:n,i+1:n) */ + + a[i__ + 1 + i__ * a_dim1] = 1.; + +/* Compute x := tau * A * v storing y in TAU(i:n-1) */ + + i__2 = *n - i__; + dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], + lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[ + i__], &c__1); + +/* Compute w := x - 1/2 * tau * (x'*v) * v */ + + i__2 = *n - i__; + alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ + + 1 + i__ * a_dim1], &c__1); + i__2 = *n - i__; + daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ + i__], &c__1); + +/* Apply the transformation as a rank-2 update: */ +/* A := A - v * w' - w * v' */ + + i__2 = *n - i__; + dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1, + &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], + lda); + + a[i__ + 1 + i__ * a_dim1] = e[i__]; + } + d__[i__] = a[i__ + i__ * a_dim1]; + tau[i__] = taui; +/* L20: */ + } + d__[*n] = a[*n + *n * a_dim1]; + } + + return 0; + +/* End of DSYTD2 */ + +} /* dsytd2_ */