X-Git-Url: https://vcs.maemo.org/git/?a=blobdiff_plain;f=3rdparty%2Flapack%2Fdlasq2.c;fp=3rdparty%2Flapack%2Fdlasq2.c;h=c898a152589defcb6388e6fa497eca9cafd684d6;hb=e4c14cdbdf2fe805e79cd96ded236f57e7b89060;hp=0000000000000000000000000000000000000000;hpb=454138ff8a20f6edb9b65a910101403d8b520643;p=opencv diff --git a/3rdparty/lapack/dlasq2.c b/3rdparty/lapack/dlasq2.c new file mode 100644 index 0000000..c898a15 --- /dev/null +++ b/3rdparty/lapack/dlasq2.c @@ -0,0 +1,548 @@ +#include "clapack.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__2 = 2; +static integer c__10 = 10; +static integer c__3 = 3; +static integer c__4 = 4; +static integer c__11 = 11; + +/* Subroutine */ int dlasq2_(integer *n, doublereal *z__, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublereal d__1, d__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + doublereal d__, e; + integer k; + doublereal s, t; + integer i0, i4, n0; + doublereal dn; + integer pp; + doublereal dn1, dn2, eps, tau, tol; + integer ipn4; + doublereal tol2; + logical ieee; + integer nbig; + doublereal dmin__, emin, emax; + integer ndiv, iter; + doublereal qmin, temp, qmax, zmax; + integer splt; + doublereal dmin1, dmin2; + integer nfail; + doublereal desig, trace, sigma; + integer iinfo, ttype; + extern /* Subroutine */ int dlazq3_(integer *, integer *, doublereal *, + integer *, doublereal *, doublereal *, doublereal *, doublereal *, + integer *, integer *, integer *, logical *, integer *, + doublereal *, doublereal *, doublereal *, doublereal *, + doublereal *, doublereal *); + extern doublereal dlamch_(char *); + integer iwhila, iwhilb; + doublereal oldemn, safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, + integer *); + + +/* -- LAPACK routine (version 3.1) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* Modified to call DLAZQ3 in place of DLASQ3, 13 Feb 03, SJH. */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLASQ2 computes all the eigenvalues of the symmetric positive */ +/* definite tridiagonal matrix associated with the qd array Z to high */ +/* relative accuracy are computed to high relative accuracy, in the */ +/* absence of denormalization, underflow and overflow. */ + +/* To see the relation of Z to the tridiagonal matrix, let L be a */ +/* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */ +/* let U be an upper bidiagonal matrix with 1's above and diagonal */ +/* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */ +/* symmetric tridiagonal to which it is similar. */ + +/* Note : DLASQ2 defines a logical variable, IEEE, which is true */ +/* on machines which follow ieee-754 floating-point standard in their */ +/* handling of infinities and NaNs, and false otherwise. This variable */ +/* is passed to DLAZQ3. */ + +/* Arguments */ +/* ========= */ + +/* N (input) INTEGER */ +/* The number of rows and columns in the matrix. N >= 0. */ + +/* Z (workspace) DOUBLE PRECISION array, dimension ( 4*N ) */ +/* On entry Z holds the qd array. On exit, entries 1 to N hold */ +/* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */ +/* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */ +/* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */ +/* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */ +/* shifts that failed. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if the i-th argument is a scalar and had an illegal */ +/* value, then INFO = -i, if the i-th argument is an */ +/* array and the j-entry had an illegal value, then */ +/* INFO = -(i*100+j) */ +/* > 0: the algorithm failed */ +/* = 1, a split was marked by a positive value in E */ +/* = 2, current block of Z not diagonalized after 30*N */ +/* iterations (in inner while loop) */ +/* = 3, termination criterion of outer while loop not met */ +/* (program created more than N unreduced blocks) */ + +/* Further Details */ +/* =============== */ +/* Local Variables: I0:N0 defines a current unreduced segment of Z. */ +/* The shifts are accumulated in SIGMA. Iteration count is in ITER. */ +/* Ping-pong is controlled by PP (alternates between 0 and 1). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments. */ +/* (in case DLASQ2 is not called by DLASQ1) */ + + /* Parameter adjustments */ + --z__; + + /* Function Body */ + *info = 0; + eps = dlamch_("Precision"); + safmin = dlamch_("Safe minimum"); + tol = eps * 100.; +/* Computing 2nd power */ + d__1 = tol; + tol2 = d__1 * d__1; + + if (*n < 0) { + *info = -1; + xerbla_("DLASQ2", &c__1); + return 0; + } else if (*n == 0) { + return 0; + } else if (*n == 1) { + +/* 1-by-1 case. */ + + if (z__[1] < 0.) { + *info = -201; + xerbla_("DLASQ2", &c__2); + } + return 0; + } else if (*n == 2) { + +/* 2-by-2 case. */ + + if (z__[2] < 0. || z__[3] < 0.) { + *info = -2; + xerbla_("DLASQ2", &c__2); + return 0; + } else if (z__[3] > z__[1]) { + d__ = z__[3]; + z__[3] = z__[1]; + z__[1] = d__; + } + z__[5] = z__[1] + z__[2] + z__[3]; + if (z__[2] > z__[3] * tol2) { + t = (z__[1] - z__[3] + z__[2]) * .5; + s = z__[3] * (z__[2] / t); + if (s <= t) { + s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.))); + } else { + s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s))); + } + t = z__[1] + (s + z__[2]); + z__[3] *= z__[1] / t; + z__[1] = t; + } + z__[2] = z__[3]; + z__[6] = z__[2] + z__[1]; + return 0; + } + +/* Check for negative data and compute sums of q's and e's. */ + + z__[*n * 2] = 0.; + emin = z__[2]; + qmax = 0.; + zmax = 0.; + d__ = 0.; + e = 0.; + + i__1 = *n - 1 << 1; + for (k = 1; k <= i__1; k += 2) { + if (z__[k] < 0.) { + *info = -(k + 200); + xerbla_("DLASQ2", &c__2); + return 0; + } else if (z__[k + 1] < 0.) { + *info = -(k + 201); + xerbla_("DLASQ2", &c__2); + return 0; + } + d__ += z__[k]; + e += z__[k + 1]; +/* Computing MAX */ + d__1 = qmax, d__2 = z__[k]; + qmax = max(d__1,d__2); +/* Computing MIN */ + d__1 = emin, d__2 = z__[k + 1]; + emin = min(d__1,d__2); +/* Computing MAX */ + d__1 = max(qmax,zmax), d__2 = z__[k + 1]; + zmax = max(d__1,d__2); +/* L10: */ + } + if (z__[(*n << 1) - 1] < 0.) { + *info = -((*n << 1) + 199); + xerbla_("DLASQ2", &c__2); + return 0; + } + d__ += z__[(*n << 1) - 1]; +/* Computing MAX */ + d__1 = qmax, d__2 = z__[(*n << 1) - 1]; + qmax = max(d__1,d__2); + zmax = max(qmax,zmax); + +/* Check for diagonality. */ + + if (e == 0.) { + i__1 = *n; + for (k = 2; k <= i__1; ++k) { + z__[k] = z__[(k << 1) - 1]; +/* L20: */ + } + dlasrt_("D", n, &z__[1], &iinfo); + z__[(*n << 1) - 1] = d__; + return 0; + } + + trace = d__ + e; + +/* Check for zero data. */ + + if (trace == 0.) { + z__[(*n << 1) - 1] = 0.; + return 0; + } + +/* Check whether the machine is IEEE conformable. */ + + ieee = ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2, + &c__3, &c__4) == 1; + +/* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */ + + for (k = *n << 1; k >= 2; k += -2) { + z__[k * 2] = 0.; + z__[(k << 1) - 1] = z__[k]; + z__[(k << 1) - 2] = 0.; + z__[(k << 1) - 3] = z__[k - 1]; +/* L30: */ + } + + i0 = 1; + n0 = *n; + +/* Reverse the qd-array, if warranted. */ + + if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) { + ipn4 = i0 + n0 << 2; + i__1 = i0 + n0 - 1 << 1; + for (i4 = i0 << 2; i4 <= i__1; i4 += 4) { + temp = z__[i4 - 3]; + z__[i4 - 3] = z__[ipn4 - i4 - 3]; + z__[ipn4 - i4 - 3] = temp; + temp = z__[i4 - 1]; + z__[i4 - 1] = z__[ipn4 - i4 - 5]; + z__[ipn4 - i4 - 5] = temp; +/* L40: */ + } + } + +/* Initial split checking via dqd and Li's test. */ + + pp = 0; + + for (k = 1; k <= 2; ++k) { + + d__ = z__[(n0 << 2) + pp - 3]; + i__1 = (i0 << 2) + pp; + for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) { + if (z__[i4 - 1] <= tol2 * d__) { + z__[i4 - 1] = -0.; + d__ = z__[i4 - 3]; + } else { + d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1])); + } +/* L50: */ + } + +/* dqd maps Z to ZZ plus Li's test. */ + + emin = z__[(i0 << 2) + pp + 1]; + d__ = z__[(i0 << 2) + pp - 3]; + i__1 = (n0 - 1 << 2) + pp; + for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) { + z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1]; + if (z__[i4 - 1] <= tol2 * d__) { + z__[i4 - 1] = -0.; + z__[i4 - (pp << 1) - 2] = d__; + z__[i4 - (pp << 1)] = 0.; + d__ = z__[i4 + 1]; + } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && + safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) { + temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2]; + z__[i4 - (pp << 1)] = z__[i4 - 1] * temp; + d__ *= temp; + } else { + z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - ( + pp << 1) - 2]); + d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]); + } +/* Computing MIN */ + d__1 = emin, d__2 = z__[i4 - (pp << 1)]; + emin = min(d__1,d__2); +/* L60: */ + } + z__[(n0 << 2) - pp - 2] = d__; + +/* Now find qmax. */ + + qmax = z__[(i0 << 2) - pp - 2]; + i__1 = (n0 << 2) - pp - 2; + for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) { +/* Computing MAX */ + d__1 = qmax, d__2 = z__[i4]; + qmax = max(d__1,d__2); +/* L70: */ + } + +/* Prepare for the next iteration on K. */ + + pp = 1 - pp; +/* L80: */ + } + +/* Initialise variables to pass to DLAZQ3 */ + + ttype = 0; + dmin1 = 0.; + dmin2 = 0.; + dn = 0.; + dn1 = 0.; + dn2 = 0.; + tau = 0.; + + iter = 2; + nfail = 0; + ndiv = n0 - i0 << 1; + + i__1 = *n + 1; + for (iwhila = 1; iwhila <= i__1; ++iwhila) { + if (n0 < 1) { + goto L150; + } + +/* While array unfinished do */ + +/* E(N0) holds the value of SIGMA when submatrix in I0:N0 */ +/* splits from the rest of the array, but is negated. */ + + desig = 0.; + if (n0 == *n) { + sigma = 0.; + } else { + sigma = -z__[(n0 << 2) - 1]; + } + if (sigma < 0.) { + *info = 1; + return 0; + } + +/* Find last unreduced submatrix's top index I0, find QMAX and */ +/* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */ + + emax = 0.; + if (n0 > i0) { + emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1)); + } else { + emin = 0.; + } + qmin = z__[(n0 << 2) - 3]; + qmax = qmin; + for (i4 = n0 << 2; i4 >= 8; i4 += -4) { + if (z__[i4 - 5] <= 0.) { + goto L100; + } + if (qmin >= emax * 4.) { +/* Computing MIN */ + d__1 = qmin, d__2 = z__[i4 - 3]; + qmin = min(d__1,d__2); +/* Computing MAX */ + d__1 = emax, d__2 = z__[i4 - 5]; + emax = max(d__1,d__2); + } +/* Computing MAX */ + d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5]; + qmax = max(d__1,d__2); +/* Computing MIN */ + d__1 = emin, d__2 = z__[i4 - 5]; + emin = min(d__1,d__2); +/* L90: */ + } + i4 = 4; + +L100: + i0 = i4 / 4; + +/* Store EMIN for passing to DLAZQ3. */ + + z__[(n0 << 2) - 1] = emin; + +/* Put -(initial shift) into DMIN. */ + +/* Computing MAX */ + d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax); + dmin__ = -max(d__1,d__2); + +/* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong. */ + + pp = 0; + + nbig = (n0 - i0 + 1) * 30; + i__2 = nbig; + for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) { + if (i0 > n0) { + goto L130; + } + +/* While submatrix unfinished take a good dqds step. */ + + dlazq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, & + nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, & + dn1, &dn2, &tau); + + pp = 1 - pp; + +/* When EMIN is very small check for splits. */ + + if (pp == 0 && n0 - i0 >= 3) { + if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 * + sigma) { + splt = i0 - 1; + qmax = z__[(i0 << 2) - 3]; + emin = z__[(i0 << 2) - 1]; + oldemn = z__[i0 * 4]; + i__3 = n0 - 3 << 2; + for (i4 = i0 << 2; i4 <= i__3; i4 += 4) { + if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= + tol2 * sigma) { + z__[i4 - 1] = -sigma; + splt = i4 / 4; + qmax = 0.; + emin = z__[i4 + 3]; + oldemn = z__[i4 + 4]; + } else { +/* Computing MAX */ + d__1 = qmax, d__2 = z__[i4 + 1]; + qmax = max(d__1,d__2); +/* Computing MIN */ + d__1 = emin, d__2 = z__[i4 - 1]; + emin = min(d__1,d__2); +/* Computing MIN */ + d__1 = oldemn, d__2 = z__[i4]; + oldemn = min(d__1,d__2); + } +/* L110: */ + } + z__[(n0 << 2) - 1] = emin; + z__[n0 * 4] = oldemn; + i0 = splt + 1; + } + } + +/* L120: */ + } + + *info = 2; + return 0; + +/* end IWHILB */ + +L130: + +/* L140: */ + ; + } + + *info = 3; + return 0; + +/* end IWHILA */ + +L150: + +/* Move q's to the front. */ + + i__1 = *n; + for (k = 2; k <= i__1; ++k) { + z__[k] = z__[(k << 2) - 3]; +/* L160: */ + } + +/* Sort and compute sum of eigenvalues. */ + + dlasrt_("D", n, &z__[1], &iinfo); + + e = 0.; + for (k = *n; k >= 1; --k) { + e += z__[k]; +/* L170: */ + } + +/* Store trace, sum(eigenvalues) and information on performance. */ + + z__[(*n << 1) + 1] = trace; + z__[(*n << 1) + 2] = e; + z__[(*n << 1) + 3] = (doublereal) iter; +/* Computing 2nd power */ + i__1 = *n; + z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1); + z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter; + return 0; + +/* End of DLASQ2 */ + +} /* dlasq2_ */