Intel®
Image Processing

Library

Reference Manual

Copyright © 1997-2000, Intel Corporation
All Rights Reserved

Issued in U.S.A.

Document Number 663791-005




g
-

=

-lTT
RN
non

[T 1]
.
non

[l

213

How to Use This Online Manug

Click to hide or show subtopics when the
bookmarks are shown.

Double-click to jump to a topic when the
bookmarks are shown.

Click to display bookmarks.

Click to display thumbnails.

Click to close bookmark or thumbnail
view.

Click and use on the page to drag the
page in vertical direction.

Click and drag to the page to magnify the
view.

Click and drag to the page to reduce the
view.

Click and drag the selection cursor to the
page.

Click to go to the first page of the manual.

M

w
w

|5 |=

v| |&

Click to go to the previous page.

Click to go to the next page.

Click to go to the last page.

Click to return back to the previous view.
Use this button when you need to go back
after using the jump button (see below).

Click to go forward from the previous view.

Click to set 100% of the page view.

Click to display the entire page within the
window.

Click to fill the width of the window.

Click to open a dialog to search for a word
or multiple words.

Click jump button on manual pages to
jump to the related subjects. Use the
return back icon above to go back.

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.

Viewing Multiple Online Manuals.  Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.

Jumping to Topics . Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:
This software is briefly described in tligverview; see page 1-1.
If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.



Intel’ Image Processing Library
Reference Manual

Document Number: 663791-005

World Wide Web: http://developer.intel.com

Revision Revision History Date

-001 First release. 07/97
-002 Documents Image Processing Library release 2.0 06/98
-003 Added the functions MpyRCPack2D, Remap, DecimateExt, Scale, 01/99

ScaleFP, ColorTwistFP, MinMaxFP, and the compare functions.
-004 Documents Image Processing Library release 2.2 02/00
-005 Documents Image Processing Library release 2.5 08/00



http://developer.intel.com/Vtune/Perflibst/

This documentation as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this document is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this document.
Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel® products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale or License Agreement for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of
any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions
at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.
*Third-party marks and brands are the property of their respective owners.

Copyright 1997-2000, Intel Corporation. All Rights Reserved.



Contents

Chapter 1 Overview
About This Software

Hardware and Software Requirements................cc.......

About This Manual ..

Manual Organization ............ccooeeeeerieeeiiiiiiaee e
Function DesCriptionS ..........uueiiiiiieiieiieeiceee e
Audience for This Manual.................cccooiiiiiiiiiiiiieeee,

Online Version....

Sources of Related Information...........cccoooovviiiiiieinnnnn..
Notational ConNVENLIONS..........ccooevviiiiiieeeeien e
Font ConventionsS ........cccooevveiii i e
Naming CoNVENtIONS ........ccovviiiiiiieie e
Function Name Conventions .........cccoeoevveviiiieeeeiiinneeeenns
X-Y Argument Order Convention...........cccceeeeevveeeevennnnnn.

Chapter 2 Image Architecture
Data Architecture.....
Color Models......

Data Types and Palettes.........cccceeeeiieiviiiiiiiiiiie e
The Sequence and Order of Color Channels.................
Coordinate SYStEMS .........uveiiiieeiiieeie e
Image Regions of Interest ........cccoooeeeiviviiiiiiii e,
Alpha (Opacity) Channel .........cccccceeviiiiiiiiiiicecee .
Scanline Alignment...........oieiiiiiieii e
IMmage DIMENSIONS.......ccoieeeviiiiiiiiieee e
Execution ArChiteCture ...............uuevveeuviiiiiiiiiiiiiiiiiiiiiiivineeens



Intel’ Image Processing Library Reference Manual

Handling Overflow and Underflow ................cccovvvveeeeeee.
In-Place and Out-of-Place Operations...............ccccccuveee
IMage TiliNg ...cooeeeeeeeeee e
THE SIZE .
Call-bacKs.........uviiiiiiiiiiii
(@ T I= Vo To I ] 11 o [
In-Place Operations and TiliNng .............ccoviiiiiiiiiiiiinnnns

Chapter 3 Error Handling

GELEIMTSTAtUS ...vveiciiiie e e
GEtEIMMOdEe... ..o
g o] ] 1 P
Y= To [T =T o = 1 o O
NUIIDEVREPOI .....vviiiiei e
SEAEITREPOI ...
GUIBOXREPOIt.....eviiiieii et
EITOr MACIOS . .ccvniiiii e
StAtUS COUES ... e
Application NOES......cccoceiiiiiiiiee e
Error Handling Example ........cccoooiiiiiiiiiiieeeeeee e,
Adding Your Own Error Handler............ccccoceeeieiiiieieeiiniiinnns

Chapter 4 Image Creation and Access
Image Header and Attributes ...............o oo
Tiling Fields in the Iplimage Structure................ccvvvveeeee.
IpITileInfo Structure ...
Creating IMageS.....cuuuuuie e
CreatelmageHeader ...........ccoovveieiiiieiiiiiiie e,



Contents

AllOCAEIMAGE .....evvveeeeieiiiiiiiiiie s
AllocatelmageFP ..........ccccooii e
Deallocatelmage ........coooeeevveiiiiiiiee e
Clonelmage.....coo oo
DealloCate .......evvviiiiiiiiiiiiiee i
ChecklmageHeader ...
Createlmagedaehne............oooeiiiiiiinieieee e
Setting Regions of Interest............coveeiiiiiii i,
CreateRON ...
DeleteROI .....viiiiiiiiiiieieei
SEIROI ...
Image Borders and Image Tiling .......c.euveiiiiniiiiiiiiieiieeiinns
SetBorderMode ...
CreateTilelNfo.........ooo e
SetTilelNfo ...
DeleteTileINfO ........eveiiiiiiiiiiii e
Memory Allocation FUNCLIONS ..........ccoeviiiiiiiiiiiciiiee e,
MAUIIOC..... e et

(1)Y= 11 (o T o PR
SIMAIOC ..
(0 |1V F=1 | (o Yo TR



Intel’ Image Processing Library Reference Manual

vi

PULPIXE ..
GO PIXE e

NOISEIMAQGE ...eeeeeiiee e
NoiseUNIformInit..........ooooiiiiii e
NoiseUniformInitFp.........ooiiii e
NoiseGaussianInit .............ceiiiieeiiiiee e
NoiseGaussianInitFP .........ccovvvieiie e
Working in the Windows DIB Environment........................
TranslateDIB ...........oiiiiee e
ConvertFromDIB ...
ConvertFromDIBSEP ....cocvviiiii e
ConVertTODIB. ...
ConVvertTODIBSEP ..couuiiiiiiiieeee e

Chapter 5 Arithmetic and Logical Operations

MUILIPIYS ...
MUILIPIYSFP ...
MUItIPlYSSCalE ...



Contents

MUIIPIYSCAIE ..., 5-9
Monadic Logical Operations.............ccoeuvuiiiiiiiiiiieeeeeieeeeiiens 5-10
LSRIfES oo 5-10
RSNIFES .o 5-11
NOE <.t 5-12
ANAS Lo 5-12
O S e 5-13
OIS e 5-14
Dyadic Logical Operations .............cccevvveeeeiiiiiiiiniieeeeeeeeeeee, 5-14
AN, 5-15
O et 5-15
Do PP 5-16
Image Compositing Based on Opacity ...........cccccoeveeeeeeeennes 5-16
Using Pre-multiplied Alpha Values ..........ccccccoooiiiiiis 5-17
AlphaComposite, AlphaCompositeC...........ccccceeeeeeeenennnn. 5-18
PreMultiplyAlpha ........oooiiii e 5-24

Chapter 6 Image Filtering

Linear Filters ... 6-2
BIUN .t @
2D CoNnVOIULION.....cooeiiieeeee @]
CreateConvKernel.............ccccooviiiii,
CreateConvKernelChar ..............cccoooiiiiiiiii,
CreateConVKErMelFP ............c.cocvveiriiieieeieeieee e,
GELCONVKEINEL. ..o 6-6]
GetCONVKErNEIChAr ...........c..oveevieieieiieieeesee e,
GEtCONVKEINEIFP ........oovveeveeeeeeeeceeee e, 6-6]
DeleteCONVKEINE ...t 6-8
DeleteConvKernelFP..........cccciiiiiiiiii @

Vii



Intel” Image Processig Library Referene Manual

viii

CoNVOIVEZD ..o
CoNVOIVEZDFP ...,
CoNVOIVESEPZD.....cco i
ConvoIveSEP2DFP ........coviiiiiieeee e
L D= To |1 (=
NoN-linear Filters.......o.iiiiiiiii e
MedianFilter........oi i
MAaXFIIEr ...ovve e
1T 1 =

Chapter 7 Linear Image Transforms
Fast Fourier Transform ..........ccccoovvvviiiii e
Real-Complex Packed (RCPack2D) Format..................
REAIFft2D ...
CCSF2D v
MPYRCPACK2D .......ccoeeiiiiii e
Discrete Cosine Transform...........cccccvvviiii e,

Chapter 9 Color Space Conversion
Reducing the Image Bit Resolution ...........cccceeeeeiiiieeeeeennn.
REAUCEBILS ..o
Conversion from Bitonal to Gray Scale Images..................
21 0] g = LN o 1] = |V

“.0“.’“.38
~ [~



Contents

Conversion of Absolute Colors to and from Palette Colors.[9-7]

Conversion from Color to Gray Scale..............ccccceeviiiiennnns
COIOITOGIAY......oceveeeeeeeeeeeeeseeeeeeeeee e, o-g
Conversion from Gray Scale to Color (Pseudo-color) ........ 0-9)
GrayToOCOoIOr. ... @
Conversion of Color Models...............cooeeiieiiiiiiie 9-10
Data ranges in the HLS and HSV Color Models............. 9-11
RGB2HSV ... 9-12
HSV2RGB ...t 9-12
RGB2HLS ... 9-13
HLS2RGB ...ttt 9-13
RGB2LUV ..ot 9-14
LUV2RGB ...ttt 9-14
RGB2XYZ ..ot 9-15
XYZ2RGB ... 9-15
RGB2YCICD.cccoiiiiiiiee et 9-16
YCICD2RGB....ceeiiiiiiiiiiei e 9-16
RGB2YUV ...t 9-17
YUV2RGB ...t 9-17
YCC2RGBi.....ciiiiiiiiie e 9-18
Using Color-Twist MatriCes ..........ueeiiieriieeeiiii e eeeeeeiiienenn 9-18
CreateColOrTWIST. ... 9-19
SEetCOIOITWISE ... 9-20
PN o] o]} Y/ @0 (o] g NV ] 9-21
DeleteColOrTWIST ........uveiiiiiiiiiiiiiieiieeieiee 9-22
COIOITWISEFP ... 9-23

Chapter 10 Histogram, Threshold, and Compare Functions
Thresholding .......cooii e, 10-2
Threshold ..., 10-2



Intel’ Image Processing Library Reference Manual

Lookup Table (LUT) and Histogram Operations.................
The IPILUT STrUCTUIe ...
CoNtrastStretCh ........vveeeeiiiiiii
COMPULEHISTO. ...t
HIStOEQUANIZE ....eveieeeeee e

ComMPAring IMAGES .....uuai e
[T =To 1] PP

Changing the Image Orientation .............cccevvvvvvieeenieeeeennn,
ROTALE. ...
GetROtAtESHIfT........ueiiiiiiiiiiiiiiiiiiiiii s



Contents

WaarpATING ...
GetAffineBound............oeeiiiiiiiii
GetAffiNneQuad .........covviiieee e,
GetAffineTransform .......cccooov i,
WarpBilinear...........oooviuiiiii e
GetBilinearBound ............ccoooiiiiiiiiiii
GetBilinearQuad............ccoeuiiiiiiiiiiicc e,
GetBilinearTransform ...........ooooviiiiiiiie e
WarpPersSpeCtiVe .........uuiii e
GetPerspectiveBound .............iiiiiiiii
GetPerspectiveQuad..........ccoooeeiiieiiiiiiiieeeeee e
GetPerspectiveTransform ...........ccccvvveeiiiiieiiieiiceen e,
Arbitrary Transforms .........ooooiiiiiiiie e,

IMage MOMENLS .....ccuuiiiiiei e
MOMENTS .o
GetSpatialMOmMeENt..........coovviiiiii e
GetCentralMOmMeENt.........oovviiiiii e
GetNormalizedSpatialMoment............cccceeeeieeeiiiiiiiinnnnn.
GetNormalizedCentralMoment...........ccccceeveeeeviievivinnnnnn.
SpatialMOMENt ......ccooeeiiiice e
CentralMOMENt..........coiiieicee e

Xi



Intel’ Image Processing Library Reference Manual

Xii

NormalizedSpatialMoment.............ccovvvvvevveieiiiinniiiiiiinnns
NormalizedCentralMoment.............ccccoeveiviiiieecceiin e,
Cross-Correlation.........ccooe oo e
NOIMECIOSSCOIT v e
Minimum and MaxXimum ..........coeiiieeriiineeei e e
MINMAXFP ... e

Chapter 13 User Defined Functions

USEIPIOCESS .. et
USEIProCESSFP ...
USEIPIroCESSPIXEI ...ceviieiii e

Chapter 14 Library Version

(€1 (] oY/ =T 51 (0] o TR

Appendix A Supported Image Attributes and Operation Modes

Appendix B Interpolation Algorithms in Geometric Transforms

Bibliography

Glossary

Index

14-1




Contents

Tables

Table 2-1 Data Ordering ......ccceeveeeveiiiiiiiiiiiiiiieieeeeeeeeeeeeeeenn 2-3
Table 3-1 iplError() Status Codes.........ccvvvvviiiiiiiiiiiiennnnnnnn, 3-10
Table 4-1 Image Creation, Data Exchange and

Windows DIB FUNCHONS..........ccooeeiiiieiiniiiiiiiiiis 4-1
Table 4-2 Image Header Attributes.............ceeiiiineeeeennn, 4-4
Table 5-1 Image Arithmetic and Logical Operations........... 5-1
Table 5-2 Types of Image Compositing Operations............ 5-22
Table 6-1 Image Filtering Functions............cccccccceeeeeeeeeeeen, 6-1
Table 7-1 Linear Image Transform Functions .................... 7-1

Table 7-2 FFT Output in RCPack2D Format for Even K ....|[7-3
Table 7-3 FFT Output in RCPack2D Format for Odd K...... 7-3
Table 7-4 RealFFT2D Output Sample for K=4, L=4.......
Table 8-1 Morphological Operation Functions.................... 8-1l

Table 9-1 Color Space Conversion Functions.................... 9-1
Table 9-2 Source and Resultant Image Data Types
for Reducing the Bit Resolution ...........................
Table 9-3 Source and Resultant Image Data Types
for Conversion from Color to Gray Scale...............
Table 9-4 Source and Resultant Image Data Types
for Conversion from Gray Scale to Color ..............
Table 10-1 Histogram, Threshold, and Compare Functions
Table 11-1 Image Geometric Transform Functions............ 11-1]
Table 12-1 Image Statistics FUNCLIONS ...........cccevviiieeeennnee. 12-1
Table A-1 Image Attributes and Modes of
Data Exchange FUNCtions.............ccccuvvvvvviiennnnee. A-1
Table A-2 Windows DIB Conversion Functions.................. A-2
Table A-3 Image Attributes and Modes of Arithmetic and
Logical FUNCLIONS .........ccoooviiiiiiiiie e, A-3

Xiii



Intel’ Image Processing Library Reference Manual

Xiv

Figures

Table A-4 Image Attributes and Modes of
Alpha-Blending Functions .............ccccovvvvviviinnnnnn.

Table A-5 Image Attributes and Modes of
Filtering FUNCLIONS..........ouciiiiiiiice e

Table A-6 Image Attributes and Modes of
Fourier and DCT FuNnctions ...........cccccevviviiiiinnns

Table A-7 Image Attributes and Modes of
Morphological Operations ...............cccceeeeiiinieeenn.

Table A-8 Image Attributes and Modes of
Color Space Conversion Functions.....................

Table A-9 Image Attributes and Modes of
Histogram and Thresholding Functions...............

Table A-10 Image Attributes and Modes of
Geometric Transform Functions............cceevevneenn.

Table A-11 Image Attributes and Modes of
Image Statisctics Functions............cccccvvvvvieennnn.

Table A-12 Image Attributes and Modes of
Functions for User-Defined Image Processing....

Table B-1 Interpolation Modes Supported by
Geometric Transform Functions............cccceeeeeees

Figure 2-1 Setting an ROI for Multi-Image Operations.......
Figure 4-1 RGB Image with a Rectangular ROl and a COlI
Figure 4-2 Example of a generated test image...................
Figure 8-1 Erosion in a Rectangular ROI ...............c...ooeee.

Figure 9-1 Example of the source and resultant images
for the bit reducing function ..............................

Figure B-1 Linear Interpolation............cccooeeeeiiiiiiiiiiiiiinnnnnn.
Figure B-2 Cubic Interpolation............cccccoovviiiiiiiiiiineee.
Figure B-3 Super-sampling Weights.............ccccieeiinee.

2-6



Contents

Examples

Example 3-1 Error FUNCHIONS ..........uvviiiiiiiiiiiiiiiiiieeceeeeenn

Example 3-2 Output for the Error Function Program

(IPL_ErrModeParent).......cccccceeeeeeveeeeevvniineeenn,

Example 3-3 Output for the Error Function Program

(IPL_ErrModeParent).......cccccoeeeeeeieeeeeeiiiiaeennn
Example 3-4 A Simple Error Handler .............ccc..ooooooee.
Example 4-1 Creating and Deleting an Image Header .....
Example 4-2 Allocating and Deallocating the Image Data..
Example 4-3 Setting the Border Mode for an Image ........

Example 4-4 Allocating an Image and Setting

[ts Pixel Values ...........coeeveveviiiiiiiiiiiiiiiiiiiiiieeee,
Example 4-5 Copying Image Pixel Values .......................
Example 4-6 Converting Images...........cccevvvvvvvvceiiinneeennn,
Example 4-7 Using the Function iplGetPixel()..................
Example 4-8 Translating a DIB Image Into an Iplimage...
Example 4-9 Converting a DIB Image Into an Iplimage ...
Example 6-1 Computing the 2-dimensional Convolution....
Example 6-2 Applying the Median Filter...........................
Example 7-1 Computing the FFT of an Image .................
Example 7-2 Computing the DCT of an Image.................

Example 8-1 Code Used to Produce Erosion

in a Rectangular ROl ...........coooiiiiiiiiieees
Example 10-1 Conversion to a Bitonal Image ..................

Example 10-2 Using the Function iplContrastStretch()

to Enhance an Image.......ccccoeevvveevivveeeiiiinnnnnnn.

Example 10-3 Computing and Equalizing the Image

HIStOgram........oveiiii e

Example 11-1 Using Macro Definition to Resize

AN IMAGE ...

XV



Intel’ Image Processing Library Reference Manual

Xvi

Example 11-2 Rotating an Image ...,

Example 11-3 Using Macro Definition to Rotate
AN IMAGE e

Example 11-4 Re-mapping an Image...............cccevvvvvvvvnnnnns
Example 12-1 Computing the Norm of Pixel Values...........
Example 13-1 Image Channel Values Processing

by User-Defined Function...........ccccccceeeeieeenenn...
Example 13-2 Pixel Values Processing

by User-Defined Function...............cccoeevvvvvnnnnnnnn.



Overview

This manual describes the structure, operation and functions of the

Intel” Image Processing Library. This library supports many functions
whose performance can be significantly enhanced on processors with the
MMX O technology, as well as on IntéIPentiunt! 11l processors.

The manual describes the library’s data and execution architecture and
provides detailed descriptions of the library functions.

This chapter introduces the Image Processing Library and explains the
organization of this manual.

About This Software

The Image Processing Library focuses on taking advantage of the
parallelism of the new SIMD (single-instruction, multiple-data)

instructions of the latest generations of Intel processors. These instructions
greatly improve the performance of computation-intensive image
processing functions. Most functions in the Image Processing Library are
specially optimized for the latest generations of processors. However, all
functions will successfully execute on older processors as well.

The library does not support the reading and writing of a wide variety of
image file formats or the display of images.

Hardware and Software Requirements

The Image Processing Library runs on personal computers that are based
on Intel! architecture processors and running Microsoft* Windows*,
Windows 95, 98, or Windows NT* operating system. The library integrates
into the customer’s application or library written in C or C++.

11



1 Intel® Image Processig Library Referene Manual

About This Manual

This manua provides abackgrouud of theimage and execution
architectue of the Image Processig Library aswell as detailed
descriptiors of the library functions The functiors are combined in groups
by their functionality. Eat group of functiorsis describd in aseparate
chapte (chaptes 3 through 14).

Manual Organization

This manu# contairs fourteen chapters:

Chapte 1 “Overview.” Introduces the Image Processing
Library, explairs the manu organization and
notation& conventions.

Chapte 2 “Image Architecture” Describe the supported

image architectue (color models datatypes data
order, and so on) aswell asthe execution
architectue and image tiling.

Chapte 3 “Error Handling” Provides information on the
error-handlirg functions included with the
library. User-definé errar handle isalso
described.

Chapte 4 “Imace Creation and Access’ Describathe
functiors usal to: create set and accesimage
attributes se image borde ard tiling; and
allocat the memoy for different daatypes. The
chapte alo describs the functiors tha facilitate
operatiosin the window environment.

Chapte 5 “Image Arithmetic and Logicd Operatios.”
Describsimage processig operatiors that
modify pixel values using simple arithmett or
logicd operationsas well as alpha-blending.

1-2



Overview

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

fmage Filtering” Describes linear and non-
linear filtering operations that can be applied to
images.

Linear Image TransfornisDescribes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the library.

Morphological OperationsDescribes the
functions that perform erosion, dilation, and their
combinations.

Color Space ConversidghDescribes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
palette to absolute color and vice versa;
conversion to different color models.

Histogram, Threshold, and Compare Functidns
Describes functions that treat an image on a
pixel-by-pixel basis: contrast stretching,
histogram computation, histogram equalization
and thresholding; compare functions.

Image Geometric TransfornidDescribes the
supported geometric transformations: resizing,
flipping, rotation, and various kinds of warping.

Image Statistics FunctioridDescribes functions
that allow you to compute image norms,
moments, minimum and maximum values.

User-Defined FunctionsDescribes library
functions that enable you to create and use your
own image processing functions.

Library Version” Describes the function
iplGetLibVersion() that returns the library
version and other information about the library.



Intel® Image Processing Library Reference Manual

The manual also includes@ossary Bibliography, andindex, as well as
two appendixes that ligupported image attributes and operation modes
and describénterpolation algorithmsised in the library.

Function Descriptions

In Chapters 3 through 14, each function is introduced by name (without the
ipl  prefix) and a brief description of its purpose. This is followed by the
function call sequence, more detailed description of the function’s purpose,
and definitions of its arguments. The following sections are included in
each function description:

Arguments

Discussion

Return Value

Application Notes

See Also

Describes all the function arguments.

Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

If present, describes a value indicating the result
of the function execution.

If present, describe any special information which
application programmers or other users of the
function need to know.

If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing applications
and image processing libraries. Both parts of the audience are expected to
be experienced in using C and to have a working knowledge of the
vocabulary and principles of image processing. The developers of image
processing software can use the Image Processing Library capabilities to
improve performance on the latest generations of processors.



Overview

Onlin e Version

This manudis availabkin an online hypertex format To obtan ahard
copy of the manua) print the online fil e using the printing capabiliy of
Adobe* Acrobat*, the tod used for the online presentation of the document.

Source s of Related Information

For more information abou compute graphics conceps ard objects refer
to the books and materias listed in the Bibliography For the latest
information abou the Image Processig Library, sud as new releases,
produd annourementsupddes and online technicé support check out
our Web site at http://developer.intel.com

Notationa | Conventions

In this manua) notationd conventiors include:
* Fonsusd for distinction betwee the text and the code

* Naming conventions
¢ Function nane conventions

Font Conventions

The following font conventiors are used:

UPPERCAE COURIER

lowercas e courier

lowercase mixed with
UpperCase Courier italic

Usdl in thetext for constamidentifiers;
for exampleIPL_DEPTH_1U.

Mixed with the uppercasin function names as
in SetExecutionMode ; alo used for key
wordsin code examplesfor examplein the
function call statemetwvoi d iplSquare()

Variablesin arguments and parameters
discussionfor example/ode, dstimage .


http://developer.intel.com/vtune/perflibst

Intel® Image Processing Library Reference Manual

1-6

Naming Conventions

The following data type conventions are used by the library:

« Constant identifiers are in uppercase; for examiple,SIDE_LEFT .

» All constant identifiers have theL prefix.

* Allfunction names have thel prefix. In code examples, you can
distinguish the library interface functions from the application
functions by this prefix.

NOTE. In this manual, thepl prefix in function names is always used in
the code examples. In the text, this prefix is sometimes omitted.

« Allimage header structures have the prefix; for example,
Iplimage , IpIROI .

« Each new part of a function name starts with an uppercase character,
without underscore; for example|AlphaComposite

Function Name Conventions

The function names in the library typically begin with the prefix and
have the following general format:

ipl < actio n > < targe t > < mod >()

where

action indicates the core functionality; for example,
-Set- , -Create- , Or-Convert-

target indicates the area where image processing is
being enacted; for exampleonvkernel  or
-FromDIB .

In a number of cases, the target consists of two or
more words; for exampleConvKernel in the
function CreateConvKernel

Some function names consist of astion or



Overview

target  only; for example, the functions
Multiply — Or RealFft2D , respectively.

mod The modfield is optional and indicates a
madification to the core functionality of a
function. For example, in the name
iplAlphaCompositeC() , Cindicates that this
function is using constant alpha values.

X-Y Argument Order Convention

Where applicable, the Image Processing Library functions use the
following order of arguments:

X, y (x first, theny)
nCols, nRows  (columns first, then rows)
width, height (width first, then height).

1-7



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Image Architecture

This chapter describes the data and execution architecture of the Image
Processing Library. It introduces the library’s color models, data types,
coordinate systems, regions of interest, data alignment, in-place and not-
in-place execution, and image tiling.

Data Architecture

Any image in the Image Processing Library has a header that describes the
image as a list of attributes and pointers to the data associated with the
image. Library functions use the image header to get the format and
characteristics of the image(s) passed to the functions. Based on the
information obtained from the header, the functions make appropriate calls
to set the data structures. Images can have different organization of data.
The library supports numerous data formats that use different color models,
data types, data order, and coordinate systems.

Color Models

The library image format supports the following color models:
¢ Monochrome or gray scale image (one color channel)

e Colorimage (3 or 4 color channels)

¢ Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY, and
YCC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channels in the
image. The operations are performed without specific identification of the
colors, unless it is a certain color conversion operation where color
identification is required.

2-1



Intel® Image Processing Library Reference Manual

2-2

The multi-spectral image (MSI) model is used for general purpose images.
It is used for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this mddeine channel for each channel

in the input. The result can be viewed as an MSI image. An MSI| image can
contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to

identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image data type is the pixel depth in
bits. The data could be signed integer, unsigned integer, or floating-point.
The following data types are supported for various color models

(s = signed, u = unsigned, f = float):

Gray scale 1, 8s, 8u, 16s, 16u, and 32f bits per pixel

Color (three-channel) 8u and 16u bits per channel

Four-channel and MSI 8s, 8u, 16s, 16u, 32s, and 32f bits per channel.

The library supports only absolute color images in which each pixel is
represented by the channel intensities. For example, in an absolute color
24-bit RGB image, three bytes (24 bits) per pixel represent the three
channel intensities. LUT (lookup table) images, that is, palette color images
are not supported. You must convert palette images to absolute color
images for further processing by the library functions. There are special
functions for converting DIB palette images to absolute color images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within a given
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, this is the case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.



Image Architecture

O

Table 2-1

The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channels in
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR.

NOTE. For functions that perform color space conversions or image
format conversions, the channel sequence information is required and
therefore must be provided. All other functions ignore channel sequence.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way
the color data is arranged: by planes or by pixels. Table 2-1 lists the
orderings that are supported for planes and for pixels.

Data Ordering

Data Ordering  Description

Pixel-oriented  All channels for each pixel

are clustered.

Plane-oriented  All image data for each
channel is contiguous
followed by the next

channel.

RGB Example
(channel ordering = RGB)

RGBRGBRGB (line 1)
RGBRGBRGB (line 2)
RGBRGBRGB (line 3)

RRRRRRRRR (line 1)
RRRRRRRRR (line 2) R plane
RRRRRRRRR (line 3)

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)

2-3



Intel® Image Processing Library Reference Manual

Coordinate Systems

Two coordinate systems are supported by the library’s image format.

¢ The origin of the image is in the top left corner, the x values increase
from left to right, and y values increase from top to bottom.

e The origin of the image is in the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to the
top.

Image Regions of Interest

A very important concept in the Image Processing Library architecture is
an image'’s region of interest (ROI). All image processing functions can
operate not only on entire images but also on image regions.

Depending on the processing needs, the following image regions can be

specified:

¢ Channel of interest (COI). A COI can be one or all channels of the
image. By default, unless the COl is changed bysl&ol()
function, processing will be carried out on all channels in the image.

¢ Rectangular region of interest  (rectangular ROI). A rectangular
ROl is a portion of the image or, possibly, the entire image. By default,
unless changed by ttetROI() function, the entire image is the
rectangular region of interest.

¢ Mask region of interest (mask ROI). Itis specified by another
(bitonal) image pointed to by theaskroO! pointer of thelplimage
structure.
A mask ROI allows an application to determine on a pixel-by-pixel
basis whether to perform an operation. Pixels corresponding to zeros in
the mask are not read (if in a source image) or written (if in the
destination image). Pixels corresponding to 1's in the mask are
processed normally.
The origin of the mask ROl is aligned to the origin of the rectangular
ROl if there is one, or the origin of the image.

An image can simultaneously have any combination of a rectangular ROI,
a mask ROI, and a COIl. Operations are performed on the intersection of all



Image Architecture

applicable ROIs. For example, if an image has both types of ROl and a
COl, operations are performed only on the values of this COI, and only for
those pixels that belong to the intersection of mask ROI and rectangular
ROL.

Both the source and destination image can have a region of interest. In such
cases, operations will be performed on the intersection of the ROIs. Thus,
an image region of interest specifies some part of an image or the entire
image. Once set, the region information of the image remains the same

until changed by the functioBetROI()

NOTE. Not all functions support mask ROI. For example, FFT functions
use only rectangular ROl and COI even if you specify a mask ROI.

Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image. (Mask ROIs are
not set for the images in this figure.) Before performing any operations,
each function checks that the ROI sizes and offsets are positive. However,
not all functions check that the ROI is within the actual image borders.

All images (input and output) in Figure 2-1 have rectangular ROIs that
specify either the entire image or specific regions set bysthROl()

function. The first step is to align the rectangular ROIs of all the images so
that their top left corners coincide. The operation is, then, performed in the
rectangular region where all the images overlap. This scheme gives much
flexibility, effectively enabling translation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation, one of the

following conditions must be met for the channel of interest (COI):

« Eachimage (input and output) has one COl,

« Eachimage (input and output) has all channels included in the ROI
(COI = 0) and all images (input and output) have the same number of
channels (one or more).



Intel® Image Processing Library Reference Manual

If one image (input or output) has one channel in its COIl and another
image (input or output) has more than one channel included in its COI, an

error will occur.

Figure 2-1 Setting an ROI for Multi-lmage Operations

Input image Output image

ROI

The processing
is performed in
the shaded area

2-6



Image Architecture

Alpha (Opacity) Channel

In addition to the color channels, an image can have one alpha channel,
also known as an opacity channel, which is mainly used for image
compositing operations (seérfage Compositing Based on Opactiiy
Chapter 5). The alpha channel must be the last channel in the image.

The interpretation of operations on the alpha channel is usually different
from that for color channels. For example, adding a constant to the RGB
channels in an RGBA image would brighten the image, while adding a
constant to the A (alpha) channel would make the image more opaque.

For this reason, by default most functions ignore the alpha channel if one is
specified. The exceptions are the compositing functions, which use this
channel as the image’s opacity value, and geometric transform functions,
which treat it as any other channel.

To apply any other function to the alpha channel, iniffieage  structure
temporarily set theljphaChannel field to O before calling the function.

Scanline Alignment

Image row data (scanline) can be aligned on doubleword (32-bit) or
quadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMX technologyi, it is important to have
the image data aligned on quadword boundaries.

Image Dimensions

There is no practical limit of the image size. A long integer is used for the
height and width of the image. This allows you to create images of such
sizes that are much beyond the hardware and OS constraints of today’s PCs
or workstations. For large image support, see als@mfe Tiling”

2-7



Intel® Image Processing Library Reference Manual

Execution Architecture

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The Image Processing Library uses saturation to prevent the pixel values
from potential overflow or underflow. Thus, when an overflow of a pixel
value is about to happen, this value is clamped to the maximum permissible
value (for example, 255 for an unsigned byte). Similarly, when underflow

of a value is about to happen, it is clamped to the minimum permissible
value, which is always zero for the case of unsigned bytes.

In-Place and Out-of-Place Operations

Image processing operations in the library can be in-place or out-of-place
operations. With an in-place operation, the output image is one of the input
images modified (that is, the pointer to the output image is the same as the
pointer to the input one). With an out-of-place operation, the output image
is a new image, not the same as any of the input images. Not all functions
can perform in-place operations. Seependix Ato check if a partucular
function supports in-place operation.

Image Tiling

Tiling is a method of image representation in which the image is broken up
into smaller images, or tiles, to allow for complicated memory
management schemes. Conceptually, the whole image would be
reconstructed by arranging the individual tiles in a grid. But the intent of
the tiling mechanism is to allow only a few of these tiles within an image to
reside in memory at one time. The application provides an actual memory
location for a tile only when requested to do so.

Most functions can use tiled images in the same way as non-tiled, and
procuce the same results. However, there are some differences, particularly
in the call-back requirement (se€éll-backs for more information).



Image Architecture

This section gives a short overview of image tiling in the Image Processing
Library. In Chapter 4 you will find more information about tiling, namely,
the descriptions of th&ileinfo  structure, thémagelD parameter, and the
functionsCreateTilelnfo , SetTileInfo  , andDeleteTilelnfo

Tile Size

In the Image Processing Library, all tiles must be of the same size,
including those on the edge of an image. The tiles on the edge of an image
must contain valid data up to the border of the image; beyond that, the
pixels are ignored, and the border mode is used instead.

The size of the image tiles is contained within thigileInfo structure.
It is restricted to being an even multiple of 8 in each dimension. Typical
tile sizes are 32x32 and 64x64.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Call-backs

For tiled images, thelimage  structure does not contain a pointer to
image data; therefore, functions operating on tiled images must acquire
data tile-by-tile. To do this, the library uses a system of call-backs, in
which the functions request pointers to individual tiles based on need.

The call-back system is implemented (by the library user) as a single
function, the prototype and behavior of which are specified below. When
calledby the library , this function must provide or release one tile’s worth
of data. The function is specified to the library in thiBack field of the
IpITilelnfo structure. The prototype is as follows:

void (*IplCallBack) (const Iplimage* img, int xIndex,
int ylndex, int mode);

whereimg is the header of the parent image;
xIndex andyindex are the indices of the requested tile; they refer to the

2-9



Intel® Image Processing Library Reference Manual

2-10

tile number, not pixel number, and count from the origin at (0,0);
mode is one of the following:

IPL_GET_TILE_TO_READ get a tile for reading;
the tile data must be returned in
img->tileInfo->tileData
and must not be changed;

IPL_GET_TILE_TO_WRITE get a tile for writing;
the tile data must be returned in
img->tileInfo->tileData
and may be changed;
changes will be reflected in the image;

IPL_RELEASE_TILE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding release function has been called.

ROI and Tiling

The meaning and behavior of ROI for a tiled image are identical to those
for a non-tiled image. As with all coordinates in tiled images, the origin of
the ROl is offset from the origin of the image, not of any one tile.

In-Place Operations and Tiling

Many functions can perform in-place operations even with tiling; see
Appendix Ato check whether this feature is supported for a particular
function. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of therROI  structure does not affect this
restriction.



Error Handling

This chapter describes the error handling facility of the Image Processing
Library. The library functions report a variety of errors including bad
arguments and out-of-memory conditions.

Most functions in the library do not return any status code. When a
function detects an error, it sets the error status code by calling
ipISetErrStatus() . This allows the error handling mechanism to work
separately from the normal flow of the image processing code. Thus, the
code is cleaner and more compact as shown in this example:

ColorTwist = iplSetColorTwist(data, scalingValue );
if(iplGetErrStatus()<0) // check for errors

The error handling system is hidden within the function
iplSetColorTwist() . As a result, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Your application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for examplelULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
callingiplRedirectError() with a pointer to your own error handling
function. For more information, seétiding Your Own Error Handlé&r

later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

3-1



Intel® Image Processing Library Reference Manual

reporting these exceptions. A floating-point library is needed if a processor
that handles floating-point is not present. You can attach an exception
handler using an underlying floating-point library for your application, if
your system supports such a library.

Error-handling Functions

The following sections describe the error functions in the Image Processing

Library.
Error
Performs basic error
handling.
void iplError(IPLStatus status , const char *  func ,

const char * context ),

status Code that indicates the type of error (see
Table 3-1, fplError() Status Codeg

func Name of the function where the error occurred.

context Additional information about the context in

which the error occurred. If the value ofntext
is NULL or empty, this string will not appear in the
error message.

Discussion

TheiplError() function must be called whenever any of the library
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the
error mode flag to alter the behavior of théError() function. For more
information on the defined error modes, s&=tErrMod& section.



Error Handling

To simplify the coding for error checking and reporting, the error handling
system of the Image Processing Library supports a set of error macros. See
“Error Macro$ for a detailed description of the error handling macros.

TheiplError() function calls the default error reporting function. You
can change the default error reporting function by calling
ipIRedirectError() . For more information, see the description of
ipIRedirectError

GetErrStatus
SetErrStatus

Gets and sets the error codes
that describe the type of
error being reported.

typedef int IPLStatus;
IPLStatus iplGetErrStatus();
void iplSetErrStatus(IPLStatus status );

status Code that indicates the type of error
(see Table 3-1,iplError() Status Codé&s

Discussion

TheiplGetErrStatus() andiplSetErrStatus() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codeédor descriptions of each of the error status codes.



Intel® Image Processing Library Reference Manual

3-4

GetErrMode
SetErrMode

Gets and sets the error
modes that describe how an
error is processed.

#define IPL_ErrModeLeaf 0

#define IPL_ErrModeParent 1

#define IPL_ErrModeSilent 2

int iplGetErrMode();

void iplSetErrMode(int errMode ),

errMode Indicates how errors will be processed. The
possible values fo#rrMode are
IPL_ErrModelLeaf ,IPL_ErrModeParent , Or
IPL_ErrModeSilent

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application has
a custom error handler, errors will be processed differently than described
below

TheiplSetErrMode() function sets the error modes that describe how
errors are processed. The defined error modegar&rrModeLeaf
IPL_ErrModeParent , andIPL_ErrModeSilent

If you specifyIPL_ErrModeLeaf , errors are processed in the “leaves” of
the function call tree. ThilError() function (in console mode) prints
an error message describiagtus , func , andcontext . Itthen
terminates the program.



Error Handling

If you specifylPL_ErrModeParent , errors are processed in the “parents”

of the function call tree. WheipIError() is called as the result of

detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call
iplError() specifyinglPL_StsBackTrace , and then return. The macro
IPL_ERRCHK() may be used to perform both the error check and back-trace
call. This passes the error “up” the function call tree until eventually some
parent function (possiblyain() ) detects the error and terminates the
program.

IPL_ErrModeSilent  is similar toIPL_ErrModeParent , except that error
messages are not printed.

IPL_ErrModeLeaf is the default, and is the simplest method of processing
errors.IPL_ErrModeParent  requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they usePL_ERRCHK() after function calls). If an application uses the
IPL_ErrModeParent  option, it is essential that it checks for errors after all
library functions that it calls.

The status code of the last detected error is stored into the variable
IplLastStatus and can be returned by callingGetErrStatus() . The
value of this variable may be used by the application during the back-trace
process to determine what type of error initiated the back trace.

ErrorStr

Translates an error or status code
into a textual description.

const char* iplErrorStr(IPLStatus status );

status Code that indicates the type of error
(see Table 3-1,iplError() Status Codé&s

3-5



Intel® Image Processing Library Reference Manual

Discussion

The functioniplErrorStr() returns a short string describisgius

Use this function to produce error messages for users. The returned pointer
is a pointer to an internal static buffer that may be overwritten on the next
call toiplErrorStr()

RedirectError

Assigns a new error handler
to call when an error occurs.

IPLErrorCallBack ipIRedirectError(IPLErrorCallBack func );

func Pointer to the function that will be called when an
error occurs.

Discussion

TheiplRedirectError() function assigns a new function to be called
when an error occurs in the Image Processing Librargnlf is NULL,
ipIRedirectError() installs the library’s default error handler.

The return value oblRedirectError() is a pointer to the previously
assigned error handling function.

For the definition of the function typedé&fLErrorCallBack  , and for
more information on th&lRedirectError() function, see Adding
Your Own Error Handl€rbelow.




Error Handling

NullDevReport
StdErrReport
GuiBoxReport

Predefined error-handling
functions that send error

messages to different output

destinations.

IPLStatus ipINulDevReport ( IPLStatus status
const char *funcname , const char *context
const char ,int  line );
IPLStatus iplStdErrReport ( IPLStatus status
const char *funcname , const char *context
const char , int line );
IPLStatus iplGuiBoxReport ( IPLStatus status
const char *funcname , const char *context
const char , int  line );
status Code that indicates the type of error (see
Table 3-1, plError() Status Codég
funcname Name of the function where the error occurred.
context Additional information about the context in
which the error occurred. If the value ofntext
is NULL or empty, this string will not appear in the
error message.
file Name of the source file in which the error
occured.
line Line number in the source file where the error

occurred.

3-7



Intel® Image Processing Library Reference Manual

3-8

Discussion

You can use these predefined functions as error handlers to redirect error
reporting in your application to a different output destination.

TheipINulDevReport() function directs error reporting to the NULL
device, that is, outputs no error messages.

TheiplStdErrReport() function is used in programs running in the
console mode, it outputs error messages to the console.

For applications running in Windows mode usi&uiBoxReport()
function that outputs error messages to the message box.

The default for dynamic libraries igiGuiBoxReport()

To change the error output stream ¢glfkedirectError() using the
pointer to one of the predefined error handling functions as the argument.
If you need to define your own error handler, gesling Your Own Error
Handlerbelow.




Error Handling

Error Macros

The errar maaos associaté with theiplError( ) function are described
below.

#defin e IPL_ERROR(status , func , context ) \
iplError(( status ),( func ),( context ));

#defin e IPL_ERRCHK(func , context )\
( (iplGetErrStatus()>=0 ) ? IPL_StsO k \
IPL_ERROR(IPL_StsBackTrace,( func ),( context )) )

#defin e IPL_ASSERT(expr, func , context )\
(( expr) ? IPL_StsOk\

IPL_ERROR(IPL_StsInternal,( func ),( context )) )
#defin e IPL_RSTERR() (iplSetErrStatus(IPL_StsOKk))
context Provides additiona information abou the contex in

which the errar has occurred If the value of
contex t iSNULL or empty, this string does not
appeain the errar message.

expr An expressia tha checls for an errar condition
ard returrs FALSE if an errar has occurred.

func Name of the function whete the errar occurred.

status Coce that indicates the type of errar (see Table 3-1,

“iplError( ) Statws Codes")

Discussion

TheIPL_ASSERT() macwo checlsfor the errar conditionexpr and sets the
errar stats IPL_Stsinterna | if the errar occurred.

The IPL_ERRCHK() macm checlsto seeif an erra has occurrel by
checkirg the errar status If an errar has occurred IPL_ERRCHK() creates
an errar bak trace messag ard returrs anon-zeo value This macro
shout normally be useal after any cal to afunction tha might have
signalel an error.

3-9



Intel® Image Processing Library Reference Manual

3-10

ThelPL_ERROR() macro simply calls th@lError() function by default.
This macro is used by other error macros. By changdgERROR() you
can modify the error reporting behavior without changing a single line of
source code.

ThelPL_RSTERR() macro resets the error statusrto_StsOk , thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

Table 3-1

Some of the status codes used by the library are listed in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself. Negative
codes indicate errors, while non-negative codes indicate success. To obtain a
short string describing the status code gg&rorStr() function.

iplError() Status Codes

Status Code Value Description

IPL_StsOk 0 No error. The iplError() function does
nothing if called with this status code.

IPL_StsBackTrace -1 Implements a back-trace of the function calls
that lead to an error. If IPL_ERRCHK()
detects that a function call resulted in an
error, it calls IPL_ERROR() with this status
code to provide further context information
for the user.

IPL_StsError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

IPL_StsInternal -3 An internal “consistency” error, often the

result of a corrupted state structure. These
errors are typically the result of a failed
assertion.

continued [J



Error Handling

Table 3-1

iplError() Status Codes ( continued)

Status Code
IPL_StsNoMem

IPL_StsBadArg

IPL_StsBadFunc

IPL_HeaderlsNull
IPL_BadlmageSize
IPL_BadOffset

IPL_BadDataPtr

IPL_BadStep
IPL_BadModelOrChSeq

IPL_BadNumChannels

IPL_BadNumchannellU

IPL_BadDepth
IPL_BadAlphaChannel

IPL_BadOrder

Value
-4

-10
-11
-12

-13
-14

-15
-16

-17
-18

-19

Description

A function attempted to allocate memory
using malloc()  or a related function and
was unsuccessful. The message context
indicates the intended use of the memory.

One of the arguments passed to the function
is invalid. The message context indicates
which argument and why.

The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

Null pointer to the image header.
Incorrect image size.
Incorrect offset of the image’s ROI.

Image must be tiled or must have non-zero

data pointer.
Incorrect widthStep  of the image.

Incorrect color model or channel sequence of
the image.

Incorrect number of channels in the image.

Number of channels for 1U depth image
must be one.

Incorrect depth value in the image header.

Incorrect alpha channel number in the image
header.

Incorrect data order value in the image
header.

continued [J

3-11



Intel® Image Processing Library Reference Manual

Table 3-1 iplError() Status Codes ( continued)

Status Code Value Description

IPL_BadOrigin -20 Incorrect data origin value in the image
header.

IPL_BadAlign -21 Incorrect data alignment value in the image
header.

IPL_BadCallBack -22 Null pointer to callback function.

IPL_BadTileSize -23 Incorrect size of the tile.

IPL_BadCOl -24 Incorrect COI of the image.

IPL_BadROISize -25 Incorrect size of ROI in the image header.

Application Notes

The variabléeplLastStatus records the status of the last error reported.
Its value is initiallylPL_StsOk . The value ofplLastStatus is not
explicitly set by the library function detecting an error. Instead, it is set by
ipISetErrStatus()

If the application decides to ignore an error, it should reset

IplLastStatus back tolPL_StsOk (seelPL_RSTERR() under ‘Error
Macros). An application-supplied error-handling function must update
IplLastStatus correctly; otherwise the Image Processing Library might
fail. This is because the macieL_ERRCHK() , which is used internally to
the library, refers to the value of this variable.

3-12



Error Handling

Error Handling Example

The following example describes the default error handling for a console
application. In the example programst.c , assume that the function
libFuncB()  represents a library function suchigisadds() , and the
functionlibFuncD()  represents a function that is called internally to the
library. In this scenariopain() andappFuncA() represent application
code.

The value of the error mode is setito. ErrModeParent . The
IPL_ErrModeParent  option produces a more detailed account of the error
conditions.

Example 3-1 Error Functions

[* application main function */

main() {

}

iplSetErrMode(IPL_ErrModeParent);
appFuncA(5, 45, 1.0);
if (IPL_ERRCHK("main","compute something")) exit(1);

[* application subroutine */

void appFuncA(int orderl, int order2, double a) {

libFuncB(a, orderl);
if (IPL_ERRCHK("appFuncA","compute using orderl")) return;

libFuncB(a, order2);
if (IPL_ERRCHK("appFuncA","compute using order2")) return;

/* do some more work */

continued O

3-13



Intel® Image Processing Library Reference Manual

Example 3-1 Error Functions ( continued)

/* library function */

void libFuncB(double a, int order) {
float *vec;
if (order > 31) {

IPL_ERROR(IPL_StsBadArg, "libFuncB",
"order must be less than or equal to 31");

return;

}

if ((vec = libFuncD(a, order)) == NULL) {
IPL_ERRCHK("libFuncB", "compute using a");

return;
}
/* code to do some real work goes here */
free(vec);
} /I next: library function called internally

double *libFuncD(double a, int order) {
double *vec;
if ((vec=(double*)malloc(order*sizeof(double))) == NULL) {

IPL_ERROR(IPL_StsNoMem, "libFuncD",
"allocating a vector of doubles");
return NULL;

}
/* do something with vec */

return vec;

}

When the program is run, it produces the output illustrated in Example 3-2.

3-14



Error Handling

Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argument in function libFuncB: order must be
less than or equal to 31

called from function appFuncA: compute using order2

called from function main: compute something

If the program runs with the°L_ErrModeLeaf  option instead of
IPL_ErrModeParent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
IPL_ErrModeParent  option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Out of memory in function libFuncD: allocating a
vector of doubles

called from function libFuncB: compute using a
called from function appFuncA: compute using orderl

called from function main[]: compute something

Again, if the program is run with theeL_ErrModeLeaf  option instead of
IPL_ErrModeParent , only the first line of the output is produced.

Adding Your Own Error Handler

The Image Processing Library allows you to define your own error handler.
User-defined error handlers are useful if you want your application to send
error messages to a destination other than the standard error output stream.
For example, you can choose to send error messages to a dialog box if your

3-15



Intel® Image Processing Library Reference Manual

application is running under a Windows system or you can choose to send
error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace the=rror() function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can use ithRedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to useithreedirectError()

function to redirect error reporting.

1. Define a function with the function prototype as follows:
typedef int (_STDCALL *IPLErrorCallBack)

(IPLStatus status , const char * funcname ,
const char * context , const char * file , int line );

2. Your application should then call th@RedirectError() function
to redirect error reporting for your own function. All subsequent calls
to iplError() will call your own error handler.

3. Toredirect the error handling back to the default handler, simply call
ipIRedirectError() with aNULL pointer.

Example 3-4 illustrates a user-defined error handler functiongrror()
which simply prints an error message constructed from its arguments and
exits.

3-16



Error Handling

Example 3-4 A Simple Error Handler

IPLStatus ownError(IPLStatus status, const char *func,
const char *context, const char *file, int line);

{
fprintf(stderr, "IPL Library error: %s, ", iplErrorStr(status));
fprintf(stderr, "function %s, ", func ? func : "<unknown>");
if (line > 0) fprintf(stderr, "line %d, ", line);
if (file '= NULL) fprintf(stderr, “file %s, ", file);
if (context) fprintf(stderr, "context %s\n", context);
IplSetErrStatus(status);
exit(1);

}

main () {
extern IPLErrorCallBack ownError;

/* Redirect errors to your own error handler */
ipIRedirectError( ownError);

/* Redirect errors back to the default error handler */

ipIRedirectError(NULL);

3-17



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Image Creation and Access

This chapte describs the functiors that provide the following

functionalities:

* Creatirg ard accessig attributes of images (both tiled and non-tiled)

« Allocating memoy for data of required type (see also the functions
CreateConvKernel in Chapte 6 and CreateColorTwisin Chapte 9)

¢ Setting copying exchangingard scalirg image data.

¢ Generatig ard addirg noise to image data.

¢ Working in the Windows DIB (device-independéibitmap)
environment.

Table 4-1 Image Creation , Data Exchange and Window s DIB Functions
Group Functio n Name Description
Creating iplCreatelmageHeader Creates an image header according to
Images the specified attributes.
iplClonelmage Creates a copy of an image.
iplAllocatelmage Allocates memory for image data of all

supported types except 32-bit FP data.

iplAllocatelmageFP Allocates memory for image data of
32-bit floating-point type.

iplDeallocatelmage Frees memory for image data pointed
to in the image header.

iplCreateROI Creates a region of interest (ROI)
header with specified attributes.

iplDeallocate Deallocates header attributes or image
data or ROI or all of the above.

continued [

4-1



Intel® Image Processing Library Reference Manual

4-2

Table 4-1

Image Creation, Data Exchange and Windows DIB Environment

Functions (continued)

Group Function Name Description
Creating  iplSetROI Sets a region of interest for an
Images image.
(cont-d) iplSetBorderMode Sets the mode for handling the
border pixels.
iplCreateTilelnfo Creates the IpITileInfo structure.
iplSetTilelnfo Sets the tiling information.
iplDeleteTilelnfo Deletes the IpITilelnfo structure.
iplCreatelmageJaehne Creates a one-channel test image.
iplCheckimageHeader Validates the field values of the
image header.
Memory ipIMalloc Allocates memory aligned to 8 bytes
Allocation boundary.
iplwMalloc Allocates memory aligned to 8 bytes
boundary for 16-bit words.
ipliMalloc Allocates memory aligned to 8 bytes
boundary 32-bit double words.
iplsMalloc Allocates memory aligned to 8 bytes
boundary for single float elements.
ipldMalloc Allocates memory aligned to 8 bytes
boundary for double float elements.
iplFree Frees memory allocated by the
ipl?Malloc  functions.
Data iplSet Sets a constant value for all pixels in
Exchange iplSetFP the image.
iplPutPixel Sets/retrieves the value of the pixel
iplGetPixel with coordinates (X, y).
iplCopy Copies image data from one image

to another.

continued [J



Image Creation and Access

Table 4-1 Image Creation, Data Exchange and Windows DIB Environment
Functions (continued)
Group Function Name Description
iplExchange Exchanges image data between two
images.
iplConvert Converts images based on the input
and output image requirements.
Data iplScale Scales image data from one data
Scaling type to another, mapping the whole
data range of the input data type to
the whole range of output data type.
(Floating-point data is not supported.)
iplScaleFP Converts 32-bit floating-point image
data to and from any other data type
supported by the library.
Noise ipINoiselmage Adds noise signal to image pixel
Generation values.
ipINoiseUniforminit, Initializes the structure for generating
ipINoiseUniformInitFP a noise signal with uniform
distribution.
ipINoiseGaussianlnit, Initializes the structure for generating
ipINoiseGaussianInitFP a noise signal with Gaussian
distribution.
Windows iplTranslateDIB Translates a DIB image into an
DIB Iplimage  structure.

iplConvertFromDIB

ip/ConvertFromDIBSep

iplConvertToDIB

ip/ConvertToDIBSep

Converts a DIB image to an
Iplimage  with specified attributes.

Same as above, but uses separate
parameters for DIB header and data.
Converts an Iplimage to a DIB
image with specified attributes.

Same as above, but uses separate
parameters for DIB header and data.

4-3



Intel® Image Processing Library Reference Manual

4-4

Image Header and Attributes

Table 4-2

The Image Processing Library functions operate on a single format for
images in memory. This format consists of a header of typenage
containing the information for all image attributes. The header also
contains a pointer to the image data. (See the attributes description in
Chapter 2, sectiotData Architecture.Y The values that these attributes

can assume are listed in Table 4-2.

Image Header Attributes

Description Value

Corresponding
DIB Attribute

Size of the Iplimage nSize in bytes
header (for internal use)

Image Header Revision ID ID number
(internal use)

Number of Channels 1toN 1 (Gray)
(including alpha channel, if any) 3 (RGB)
4 (RGBA)
Alpha channel number 0 (if not present) 4 (RGBA)
N
Bits per channel
Gray only IPL_DEPTH_1U (1-bit) Supported
All images: color, gray, IPL_DEPTH_8U (8-bit unsigned) Supported
and multi-spectral (RGB, RGBA)
. ) IPL_DEPTH_8S (8-bit signed) Not supported
(TTe S'g“etd dtita Isused |5 "HEPTH 16U (16-bitunsign)  Not supported
only as 0‘: p‘: or S‘:,me IPL_DEPTH_16S (16-bit signed)  Not supported
Image output operations.) |5, "y 305 (32-bit signed)  Not supported
IPL_DEPTH_32F (32-hit float) Not supported
Color model 4 character string: “Gray”, “RGB,”  Not supported.
“RGBA", “CMYK," etc. Implicitly, RGB
color model.
continued [



Image Creation and Access

Table 4-2

Image Header Attributes ( continued)

Description

Value

Corresponding
DIB Attribute

Channel sequence

Data Ordering

Origin

Scanline alignment

Image size: height
width

Region of interest (ROI)
Mask

Image size (bytes)
Image data pointer

Aligned width

Border mode of the top,
bottom, left, and right
sides of the image.

Border constant on the
top, bottom, left, and
right side of the image.

Original Image
Image ID

Tiling information

4-character string. Can be “G”,
“GRAY”, “BGR”, “BGRA”", “RGB”,
“RGBA", “HSV”, “HLS”, “XYZ”,
“YUV”, “YCr”, “YCC”, or “LUV".

IPL_DATA_ORDER_PIXEL
IPL_DATA_ORDER_PLANE

IPL_ORIGIN_TL (top left corner)
IPL_ORIGIN_BL (bottom left)

IPL_ALIGN_DWORD
IPL_ALIGN_QWORD

Integer
Integer

Pointer to structure

Pointer to another Iplimage
Integer

Pointer to data

Width (row length in bytes) of
image padded for alignment

BorderMode [4]

BorderConst [4]

Pointer to original image data

Not supported
(implicitly BGR for
RGB images.)

Supported
Not supported

Supported
Supported

Supported
Not Supported

m
n

Not supported

Not supported

For application use only; ignored by the library.

Pointer to IplTileInfo

structure

4-5



A

Intel® Image Processing Library Reference Manual

4-6

Figure 4-1

Figure 4-1 presents a graphical depiction of an RGB image with a
rectangular ROl and a COI.

RGB Image with a Rectangular ROl and a COI

Iplimage
IpIROI* —— IpIROI
imageData* Int COI
plane ixel "'/’Rectangular ROI: xOffset
yOffset
RGBRGB... height
width
4 plane(s)
Y
R
G
\_l__B
R/G/B
0OSD05559




Image Creation and Access

The C language definition for theLimage structure is given below.

Iplimage Structure Definition

typedef struct _Iplimage {

IPL.H
int nSize /* size of ipllmage struct */
int ID /* image header version */
int nChannels;
int alphaChannel,
int depth; /* pixel depth in bits */
char  colorModel[4];
char  channelSeq[4];
int dataOrder;
int origin;
int align; [* 4- or 8-byte align */
int width;
int height;
struct _IpIROI *roi; [* pointer to ROI if any */
struct _Iplimage *maskROIl; /*pointer to mask ROI if any */
void *imageld; /* use of the application */
struct _IplTileInfo *tileinfo; /* contains information
on tiling */

int imageSize; /* useful size in bytes */
char *imageData,; /* pointer to aligned image */
int  widthStep; [* size of aligned line in bytes */
int BorderMode[4]; /* the top, bottom, left,

and right border mode */
int BorderConst[4]; [* constants for the top, bottom,

left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned image */

} Iplimage;

4-7



Intel® Image Processing Library Reference Manual

Tiling Fields in the Iplimage Structure

Image tilingin the Image Processing Library was described in Chapter 2.
The following fields from theplimage  structure are used in tiled images:

struct Iplimage {

void* imageld;
IpITileInfo *tilelnfo;

}

Theimageld field can be used by the application, and is ignored by the
library. Thetileinfo field contains information on tiling. It is described
in the next section.

The library expects either théeinfo pointer or themageData pointer

to beNULL If the former isNULL, the image is not tiled; if the latter is

NULL, the image is tiled. It is an error condition if both or neither of the two
areNULL

IpITileInfo Structure

This structure provides information for image tiling:

typedef struct _IplTileInfo
{
IplCallBack callBack;
void *id;
char* tileData
int width, height;
} IplTilelnfo;

HerecallBack is the call-back function (seeCall-backs in Chapter 2);

id is an additional identification fieldyidth andheight are the tile sizes
for the image; andieData is the field which the call-back function
should point to the requested tile.



Image Creation and Access

Creating Images

There are several ways of creating a new image:

Construct anplimage header by setting the attributes to appropriate
values, then call the functiaplAllocatelmage() to allocate
memory for the image or set the image data pointer to image data
(in a compatible format) that already exists.

Call ipiCreatelmageHeader() to create amplimage header, then
call the functionplAllocatelmage() to allocate memory for the
image or set the image data pointer to existing image data.

Convert a DIB image to amlimage using the functions
iplTranslateDIB() or iplConvertFromDIB() . See the section
“Working in the Windows DIB Environmerit

Create a copy of existing image by callipgClonelmage()

CreatelmageHeader

Creates anplimage
header according to the
specified attributes.

Iplimage* iplCreatelmageHeader(int nChannels ,

int alphaChannel , int depth , char*  colorModel
char* channelSeq , int  dataOrder , int origin , int  align
int  width , int  height , IpIROI* roi , Iplimage* maskROI,

void* imagelD , IplTileInfo* tileinfo ),
nChannels Number of channels in the image.
alphaChannel Alpha channel number (0O if there is no alpha

channel in the image).

depth Bit depth of pixels. Can be one of

IPL_DEPTH_1U, IPL_DEPTH_8U, IPL_DEPTH_8S,
IPL_DEPTH_16U, IPL_DEPTH_16S,
IPL_DEPTH_32S, or IPL_DEPTH_32F. See Table
4-2,

4-9



Intel® Image Processing Library Reference Manual

colorModel A four-character string describing the color
model: “RGB”, “GRAY", “HLS" etc.
channelSeq The sequence of color channels; can be one of the

following: “G”, “GRAY”, “BGR", “BGRA”,

“RGB”, “RGBA”, “HSV”, “HLS", “XYZ",

“YUV”, “YCr”, “YCC”, “LUV". The library uses
this information only for image type conversions
of known image channel formats.

dataOrder IPL_DATA_ORDER_PIXELOr
IPL_DATA_ORDER_PLANE

origin The origin of the image. Can beL_ORIGIN_TL
or IPL_ORIGIN_BL .

align Alignment of image data. Can be
IPL_ALIGN_DWORDOr
IPL_ALIGN_QWORD

width Width of the image in pixels.
height Height of the image in pixels.
roi Pointer to an ROI (region of interest) structure.

This argument can beuLL, which implies that a
region of interest comprises all channels and the
entire image area.

maskROI Pointer to the header of another image that
specifies the mask ROI. This argument can be
NULL, which indicates that no mask ROl is used.
A pixel is processed if the corresponding mask
pixel is 1, and is not processed if the mask pixel
is 0. ThemaskRrol field of the mask image’s
header is ignored.

imagelD The image ID (field reserved for the use of the
application to identify the image).

tileInfo The pointer to theplTileInfo structure
containing information used for image tiling.

4-10



Image Creation and Access

Example 4-1

Discussion

The functioniplCreatelmageHeader() creates afplimage header
according to the specified attributes; see Example 4.1. The image data
pointer is set tovULL; no memory for image data is allocated.

Creating and Deleting an Image Header

int example41( void ) {
Iplimage *imgh = iplCreatelmageHeader(

3, /I number of channels
0, /I no alpha channel
IPL_DEPTH_8U, /I data of byte type
"RGB", /I color model
"BGR", /I color order
IPL_DATA_ORDER_PIXEL, /I channel arrangement
IPL_ORIGIN_TL, /I top left orientation
IPL_ALIGN_QWORD, /I 8 bytes align
150, /I image width
100, /I image height
NULL, /I no ROI
NULL, /I no mask ROI
NULL, /I no image ID
NULL); /I not tiled

if( NULL == imgh ) return O;

iplDeallocate( imgh, IPL_IMAGE_HEADER );
return IPL_StsOk == iplGetErrStatus();

The functioniplCreateimageHeader() sets the image size attribute in
the header to zero. To allocate memory for image data, call the function
iplAllocatelmage()

4-11



Intel® Image Processing Library Reference Manual

4-12

The mask region of interest specified by theskrO/ pointer is discussed
in the sectiorimage Regions of Intere@Chapter 2). Théntersectionof
aligned rectangular ROI(s) and maskROI(s)dirsource images and the
destination image forms the actual region to be processed.

For geometric transformation functions, suctzasm() or Mirror() , the

shape and orientation of rectangular ROIs and mask ROIs of the source
image changes according to the function. In these cases, the functions write
the results of image processing to the intersection of the destination ROI
and thetransformedsource ROI.

For more information about geometric transformation,Seepter 11

Return Value

The newly constructeghlimage header.



Image Creation and Access

Allocatelmage, AllocatelmageFP

Allocates memory for image
data according to the
specified header.

void iplAllocatelmage(lplimage* image, int  doFill,
int  fillvalue );
void iplAllocatelmageFP(Iplimage* image, int  doFill,

float  fillvValue );

image An image header with BULLimage data pointer.
The pointer will be set to newly allocated image
data memory after calling this function.

doFill A flag: if zero, indicates that the pixel data should
not be initialized byfillvalue

fillvValue The initial value for pixel data.

Discussion

These functions are used to allocate image data on the basis of a specified
image header. The header must be properly constructed before calling this
function. Note thatPL_DEPTH_32F is the only admissible depth for

Iplimage  passed intaplAllocatelmageFP() ; this depth must not be

used foriplAllocatelmage()

Memory is allocated for the image data according to the attributes specified
in the image header; see Example 4-2. The image data pointer will then
point to the allocated memory. It is highly preferable, for efficiency
considerations, that the scanline alignment attribute (arguaignt ) in

the image header be setita._ALIGN_QWORDThis will force the image

data to be aligned on a quadword (64-bit) memory boundary.

The functions set the image size attribute in the header to the number of
bytes allocated for the image.

4-13



Intel® Image Processing Library Reference Manual

Example 4-2 Allocating and Deallocating the Image Data

int example42( void ) {

Iplimage img;
char colorModel[4] = "RGB";
char channelSeq[4] = "BGR";

img.nSize = sizeof( Iplimage );

img.nChannels = 3; /I number of channels
img.alphaChannel = 0; /I no alpha channel
img.depth = IPL_DEPTH_16U,; /I data of ushort type
img.dataOrder = IPL_DATA ORDER_PIXEL;

img.origin = IPL_ORIGIN_TL; /I top left
img.align = IPL_ALIGN_QWORD; /I align
img.width = 100;

img.height = 100;

img.roi = NULL; /I no ROI
img.maskROI = NULL; /I no mask ROI
img.tileInfo = NULL; /I not tiled

/I The following fields will be set by the function

img.widthStep = 0;
img.imageSize = 0;
img.imageData = NULL;
img.imageDataOrigin = NULL;

*((int*)img.colorModel) =* *((int*)colorModel);

*((int*)img.channelSeq) =* *((int*)channelSeq);

iplAllocatelmage( &img, 0, 0 ); // allocate image data
if(t NULL == img.imageData ) return 0; // check result

iplDeallocate( &img, IPL_IMAGE_DATA );
/I deallocate image data only
return Ipl_StsOk == iplGetErrStatus();

4-14



Image Creation and Access

Deallocatelmage

Deallocates (frees) memory
for image data pointed to in
the image header.

void iplDeallocatelmage(Iplimage* image)

image An image header with a pointer to the allocated
image data memory. The image data pointer will
be set tavULL after this function executes.

Discussion

The functionipiDeallocatelmage() is used to free image data memory
pointed to by themageData member of the image header. The respective
pointer to image data or ROI data is settoLL after the memory is freed

up.

Clonelmage

Creates a copy of an image.

Iplimage* iplClonelmage (const Iplimage* image);

image Header of the image to be cloned.
Discussion

The function creates a copy ofage , including its data and ROI. The
imagelD , maskROI, andtileinfo fields of the copy are set toULL
Return Value

A pointer to the created copy ofiage . If the source image is tiled, the
function creates a non-tiled image and does not copy the image data.

4-15



Intel® Image Processing Library Reference Manual

4-16

Deallocate

Deallocates or frees memory
for image header or data or
mask ROI or rectangular
ROl or all four.

void iplDeallocate (Iplimage* image, int  flag )

image An image header with a pointer to allocated
image data memory. The image data pointer will
be set tavULL after this function executes.

flag Flag indicating what memory area to free:
IPL_IMAGE_HEADER Free header structure.
IPL_IMAGE_IMAGE Free image data, set pointerNoLL.
IPL_IMAGE_ROI Free image ROI, set pointer taJLL
IPL_IMAGE_MASK Free mask image data, set pointento.L

IPL_IMAGE_ALL Free header, image data, mask ROl and
rectangular ROI.

IPL_IMAGE_ALL_WITHOUT_MASK
Free header, image data, and rectangular ROI.

Discussion

The functionipiDeallocate() is used to free memory allocated for
header structure, image data, ROI data, mask image data, or all four. The
respective pointer is set taJLL after the memory is freed up.



Image Creation and Access

ChecklmageHeader

Validates field values of
an existing image

header structure.
IPLStatus iplChecklmageHeader ( const Iplimage* hdr )
hdr Pointer to an image header structure
Discussion

The functioniplChecklmageHeader() checks whether thglimage

header structure of an image has valid field values, and returns the
corresponding status code. This function works on the assumption that the
referenced image contains non-empty data. Many image processing
functions in Image Processing Library callcheckimageHeader() to

verify that the image information is correct. You can also use this function
in your application to check that some imported image data, not created by
Image Processing Library functions but referenced injgth@age

header, has the valid header structure.

The following main status codes can be returned by the
iplCheckimageHeader() function (sedmage Header and Attributder

the explanation of image header fields):

IPL_StsOK Indicates no errors in image header structure.

IPL_HeaderlsNull Indicates an error condition if thelr pointer to
the image header is NULL.

IPL_BadDataPtr Indicates an error condition if a non-tiled image
has NULLimageData pointer.

IPL_BadlmageSize Indicates an error condition if a non-tiled image
has negative or zelimageSize .

IPL_BadStep Indicates an error condition if a non-tiled image
has negative or zemidthStep

4-17



Intel® Image Processing Library Reference Manual

4-18

IPL_BadCallBack Indicates an error condition if the image is tiled
but the call-back function is not set in the
_IplTilelnfo structure.

IPL_BadTileSize Indicates an error condition if a tiled image has

tile sizes not multiple of 8.

IPL_BadCOlI Indicates an error condition if an image with ROI
has incorrectoi field value in the IpIROI
structure (that is;oi is negative or greater than
nChannels ).

IPL_BadROISize Indicates an error condition if an image with ROI
has negative or zero ROI size value.

IPL_BadOffset Indicates an error condition if an image with ROI
has negative ROI offset value.

CreatelmageJaehne

Creates a one-channel
test image.

Iplimage* iplCreatelmageJaehne ( int depth , int  widt h,
int  height )

depth Bit depth of the image to be created.

width, height Size of the image to be created.

Discussion

The functioniplCreateimageJaehne() creates a specific one-channel

test image that has the user-defined bit depth and size. This function returns
the pointer to the correspondingimage  structure. Thelepth parameter

can specify any data type that is used in the Image Processing library.

For the 32f floating point data type the pixel values in the created image

can vary in the range between 0 (inclusive) and 1 (exclusive).



A

Image Creation and Access

Figure 4-2 illustrates an exampe of the ted image generatd by the
iplCreatelmageJaehne( ) function Thested images can be effectively

usal when you neel to visualize and interpre the resuls of applying
filtering functions similarly to wha is proposé in [Jaehne].

Figur e 4-2 Exampl e of a Generated Test Image

ﬁ

4-19



Intel® Image Processing Library Reference Manual

Setting Regions of Interest

To set a region of interest, the functigmsetROI()  uses a ROI structure
IpIROI presented below. ThelROI member of the image header must
point to thisiplROI  structure to be effective. This can be done by a simple
assignment. The application may choose to construct the ROI structure
explicitly without the use of the function.

IpIROI Structure Definition

typedef struct _IpIROI {
unsigned int coi;

int xOffset;

int yOffset;

int width;

int height;
} IpIROI;

The members in thelROI  structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image will
be affected by processing taking place in the
region of interestyoi equal to O indicates that all
channels will be affected.

xOffset andyOffset The offset from the origin of the rectangular ROI.
(See sectionltnage Regiorisin Chapter 2 for
the description of image regions.)

width andheight The size of the rectangular ROI.

4-20



Image Creation and Access

CreateROl

Allocates and sets the
region of interest (ROI)
structure.

IpIROI* iplCreateROI(int coi , int xOffset , int yOffset |,
int  width , int  height );

coi The channel of interest. It can be set to O (for all
channels) or to a specific channel number.

xOffset, yOffset The offsets from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The functionipiCreateROI() allocates a new ROI structure with the
specified attributes and returns a pointer to this structure. You can delete
this structure by callingpiDeleteROI()

Return Value

A pointer to the newly constructed ROI structureNari L.

DeleteROI

Allocates and sets the
region of interest (ROI)
structure.

void iplDeleteROI(IpIROI* roi );
roi The ROI structure to be deleted.

4-21



Intel® Image Processing Library Reference Manual

4-22

Discussion

The functioniplDeleteROI() deallocates a ROI structure previously
created bypiCreateROI()

SetROl

Sets the region of
interest (ROI) structure.

void iplSetROI(IpIROI* roi , int coi , int  xOffset
int  yOffset , int width , int height );

roi The pointer to the ROI structure to modify in the
original image.

coi The channel of interest in the original image. It
can be set to 0 (for all channels) or to a specific
channel number.

xOffset, yOffset The offset from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The functioniplSetROI()  sets the channel of interest and the rectangular
region of interest in the structure; .

The argumentoi defines the number of the channel of interest. The
argumentsOffset andyOffset define the offset from the origin of the
rectangular ROI. The membetsight andwidth define the size of the
rectangular ROI.



Image Creation and Access

Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixels that lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3 filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will require
more rows from the border. These border issues therefore exist at the top
and bottom, left and right sides, and the four corners of the image. The
library provides a functioiplSetBorderMode  that the application can use

to set the border mode within the image. This function specifies the
behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images. (Outer tiles might contain extra data if the image size is not
an integer multiple of the tile size, but these values are ignored and the
border mode is used instead.)

SetBorderMode

Sets the mode for handling
the border pixels.

void iplSetBorderMode(Iplimage * src , int  mode,
int  border , int constval )

src The image for which the border mode is to be set.
mode The following modes are supported:
IPL_BORDER_CONSTANT  The valueconstval is used for all
pixels.
IPL_BORDER_REPLICATE  The last row or column is replicated for
the border.
IPL_BORDER_REFLECT The last rows or columns are reflected in
reverse order, as necessary to create the
border.

4-23



Intel® Image Processing Library Reference Manual

IPL_BORDER_WRAP The required border rows or columns are
taken from the opposite side of the
image.

border The side that this function is called for. Can be an
OR of one or more of the following four sides of
an image:

IPL_SIDE_TOP Top side.
IPL_SIDE_BOTTTOM Bottom side.
IPL_SIDE_LEFT Left side.
IPL_SIDE_RIGHT Right side.
IPL_SIDE_ALL All sides.

The top side is also used to define all border
pixels in the top left and right corners. Similarly,
the bottom side is used to define the border pixels
in the bottom left and right corners.

constVal The value to use for the border when the mode is
set tolPL_BORDER_CONSTANT

Discussion

The functioniplSetBorderMode() is used to set the border handling

mode of one or more of the four sides of an image (see Example 4-3).
Intensity values for the border pixels are assumed or created based on the
mode.

4-24



Image Creation and Access

Example 4-3 Setting the Border Mode for an Image

int example43( void ) {

Iplimage *imgh = iplCreatelmageHeader( 3,0,IPL_DEPTH_8U,
"RGB", "BGR", IPL_DATA_ ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, 100, 150, NULL, NULL, NULL, NULL);

if(t NULL == imgh ) return O;

iplSetBorderMode( imgh, IPL_BORDER_REPLICATE, IPL_SIDE_TORP|
IPL_SIDE_BOTTOM | IPL_SIDE_LEFT | IPL_SIDE_RIGHT, 0 );

iplDeallocate( imgh, IPL_IMAGE_HEADER );

return Ipl_StsOk == iplGetErrStatus();

CreateTilelnfo
Creates the IplITilelnfo

structure.
IpITileInfo* iplCreateTilelnfo(lplCallBack callBack
void* id, int width , int height );
callBack The call-back function.
id The image ID (for application use).
width, height The tile sizes.
Discussion
The functioniplCreateTilelnfo() allocates a newlTilelnfo

structure with the specified attributes and returns a pointer to this structure.
To delete this structure, cafliDeleteTileInfo()

Return Value
The pointer to the creategTileInfo structure ONULL

4-25



Intel® Image Processing Library Reference Manual

SetTilelnfo

Sets the IplTilelnfo
structure fields.

void iplSetTileInfo(lplTileInfo* tileInfo,
IplCallBack callBack , void* id, int width , int  height );

tileInfo The pointer to theplITilelnfo structure.
callBack The call-back function.

id The image ID (for application use).
width, height The tile sizes.

Discussion

This function sets attributes for an existilgrileinfo structure.

DeleteTilelnfo

Deletes the IpITilelnfo
structure.

void iplDeleteTileInfo(IpITilelnfo* tileInfo);

tileInfo The pointer to theplITileinfo structure.

Discussion

This function deletes thelITilelnfo structure previously created by the
CreateTilelnfdfunction.

4-26



Image Creation and Access I

Memory Allocation Functions

Functions of thepl?Malloc() group allocate aligned memory blocks for
the image data. The size of allocated memory is specified byithe
parameter. The?” in ipl?Malloc() stands fow, i , s, ord; these letters
indicate the data type in the function names as follows:

ipIMalloc() byte

iplwMalloc() 16-bit word

ipliMalloc() 32-bit double word

iplsMalloc() 4-byte single floating-point element
ipldMalloc() 8-byte double floating-point element

O

NOTE. The only function to free the memory allocated by any of these
functions isplFree()

Malloc

Allocates memory aligned to
an 8-byte boundary.

void* ipIMalloc(int size );
size Size (in bytes) of memory block to allocate.
Discussion

TheiplMalloc() function allocates memory block aligned to an 8-byte
boundary. To free this memory, usé-ree()

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then tRe/LL value is returned.

4-27



A

Intel® Image Processing Library Reference Manual

4-28

wMalloc

Allocates memory aligned to
an 8-byte boundary for 16-
bit words.

short* iplwMalloc(int size );

size Size in words (16 bits) of memory block to
allocate.

Discussion

TheiplwMalloc() function allocates memory block aligned to an 8-byte

boundary for 16-bit words. To free this memory, yseree()

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the/LL value is returned.

iIMalloc

Allocates memory aligned to
an 8-byte boundary for 32-bit
double words.

int* ipliMalloc(int size );

size Size in double words (32 bits) of memory block
to allocate.

Discussion

The ipliMalloc() function allocates memory block aligned to an 8-byte

boundary for 32-bit double words. To free this memory, iuseee()



Image Creation and Access

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then tRe/LL value is returned.

sMalloc

Allocates memory aligned to
an 8-byte boundary for
floating-point elements.

float * iplsMalloc(int size );

size Size in float elements (4 bytes) of memory block
to allocate.

Discussion

TheiplsMalloc() function allocates memory block aligned to an 8-byte
boundary for floating-point elements. To free this memory, use

iplFree()

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then tRe/LL value is returned.

4-29



Intel® Image Processing Library Referene Manual

4-30

dMalloc

Allocates memoy aligned to
an 8-byke bounday for double
floating-poirt elements.

double * ipldMalloc(int size );

size Size in doubk elemens (8 byteg of memory
block to allocate.

Discussion

TheipldMalloc( ) function allocates memog blodk aligned to an 8-byte
bounday for doubk floating-poirt elementsTo free this memory use
iplFree()

Retur n Value

The function returrs a pointe to an aligned memory block. If no memory
isavailabk in the system then the NULL valueis returned.

iplFree

Frees memoy allocated by
one of the ipI?Malloc
functions.

void iplFree(voi d * ptr);

ptr Pointe to memoy block to free.



Image Creation and Access

Discussion

TheiplFree()  function frees the aligned memory block allocated by one
of the functionsplMalloc() , iplwMalloc()  , ipliMalloc() ,

iplsMalloc() , OripldMalloc()

O

NOTE. The functionplFree() ~ cannot be used to free memory allocated
by standard functions likealloc()  or calloc()

Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying data from one
image to another, exchanging the data between the images, and converting
one image to another according to the attributes defined in the source and
resultantplimage headers.

Set, SetFP

Sets a value for an
image’s pixel data.

void iplSet(Iplimage* image, int fillValue );

void iplSetFP(Iplimage* image , float fillValue );

image An image header with allocated image data.
fillValue The value to set the pixel data.
Discussion

The functionspiset()  andiplSetFP()  set the image pixel data. Before
calling the functions, you must properly construct the image header and
allocate memory for image data; see Example 4-4. For images with the bit

4-31



Intel® Image Processing Library Reference Manual

depth lower than thélvaliue , thefillvalue is saturated when
assigned to pixel. If an ROI is specified, only that ROl is filled.

Example 4-4 Allocating an Image and Setting Its Pixel Values

int example44( voi d ) { Iplimage *img;
_try {
img = iplCreatelmageHeader( 1,0,IPL_DEPTH_8U,"GRAY",
"GRAY", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, 100,150, NULL, NULL, NULL, NULL);
iflt NULL == img ) return O;
iplAllocatelmage( img, 0, 0 );
if( NULL == img->imageData ) return O;
iplSet( img, 255 );
}
_ finally {
iplDeallocate(img, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();

Copy

Copies image data from one
image to another.

void iplCopy(Iplimage* srclmage , Iplimage* dstimage );
srclmage The source image.

dstimage The resultant image.

Discussion

The functionipiCopy()  copies image data from a source image to a
resultant image. Before calling this function, the source and resultant

4-32



Image Creation and Access

headers must be properly constructed and image data for both images must
be allocated; see Example 4-5. The following constraints apply to the
copying:

¢ The bit depth per channel of the source image should be equal to that
of the resultant image.

e The number of channels of interest in the source image should be equal
to the number of channels of interest in the resultant image; that is,
either the sourceoi = the resultantoi = 0 or both cois are nonzero.

¢ The data ordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

Thealign , height , andwidth field values (see Table 4-2) may differ in
source and resultant images. Copying applies to the areas that intersect
between the source ROI and the destination ROI.

4-33



Intel® Image Processing Library Reference Manual

Example 4-5 Copying Image Pixel Values

int example45( void ) {
Iplimage *imga, *imgb;
_try {
imga = iplCreatelmageHeader( 1, O, IPL_DEPTH_8U,
"GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,
IPL_ORIGIN_TL, IPL_ALIGN_QWORD, 100, 150,
NULL, NULL, NULL, NULL);
if(t NULL == imga ) return O;
imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, 100, 150, NULL, NULL,
NULL, NULL);
if( NULL == imgb ) return O;

iplAllocatelmage( imga, 1, 255 );
if( NULL == imga->imageData ) return O;

iplAllocatelmage( imgb, 0, 0 );
if( NULL == imgb->imageData ) return O;
/I Copy pixel values of imga to imgb
iplCopy( imga, imgb );
/I Check if an error occurred
if( iplGetErrStatus() != IPL_StsOk ) return O;
}
_ finally {
ipIDeallocate(imga,|PL_IMAGE_HEADER|IPL_IMAGE_DATA);
ipIDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();

4-34



Image Creation and Access

Exchange

Exchanges image data
between two images.

void iplExchange(Iplimage* ImageA, Iplimage* ImageB));
ImageA The first image.

ImageB The second image.

Discussion

The functioniplExchange() ~ exchanges image data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
allocated. The following constraints apply to the data exchanging:

e The bit depths per channel of both images should be equal.
e The numbers of channels of interest in both images should be equal.

« The data ordering of both images should be the same (either pixel- or
plane-oriented) .

Thealign , width , andheight field values (see Table 4-2) may differ in
the first and the second image. The data are exchanged at the areas of
intersection between the ROI of the first image and the ROI of the second
image.

4-35



Intel® Image Processing Library Reference Manual

4-36

Convert

Converts source image data to
resultant image according to
the image headers.

void iplConvert(Iplimage* srclmage,  Iplimage* dstimage );
srclmage The source image.

dstimage The resultant image.

Discussion

The functioniplConvert() converts image data from the source image to
the resultant image according to the attributes defined in the source and
resultantplimage headers; see Example 4-6.

The main conversion rule saturation The images that can be converted
may have the following different characteristics:

¢ Bit depth per channel

¢ Data ordering

¢ Origins

(For more information about these characteristics,Isgge 4-2)

The following constraints apply to the conversion:

« If the source image has a bit depth per channel equal to 1, the resultant
image should also have the bit depth equal to 1.

¢ The number of channels in the source image should be equal to the
number of channels in the resultant image.

¢ The height and width of the source image should be equal to those of
the resultant image.

All ROls are ignored.



Image Creation and Access

Example 4-6 Converting Images

int example46( void ) {
Iplimage *imga, *imgb;
_try {

}

imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, 100, 150, NULL, NULL,
NULL, NULL);

if(t NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, 100, 150, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

iplAllocatelmage( imga, 1, 128 );

if( NULL == imga->imageData ) return O;
iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I Convert unsigned char to short
iplConvert( imga, imgb );

/I Check if an error occurred

if( iplGetErrStatus() !'= IPL_StsOk ) return O;

_ finally {

}

iplDeallocate(imga,|PL_IMAGE_HEADER|IPL_IMAGE_DATA);
iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

return IPL_StsOk == iplGetErrStatus();

4-37



Intel® Image Processing Library Reference Manual

4-38

PutPixel,
GetPixel

Sets/retrieves a value of
an image’s pixel.

void iplPutPixel(Ipllmage* image, int  x, int y,
void* pixel);

void iplGetPixel(Iplimage* image, int  x, int y,

void* pixel);
image An image header with allocated image data.
Xy The pixel coordinates.

pixel The pointer to a buffer storing the consecutive
channel values for the pixel.

Discussion

The functioniplPutPixel() sets the channels image 's pixel (x,y) to
the values specified in the buffeixe/

The functioniplGetPixel() retrieves the values of all channels in
image’s pixel (x,y) to the bufferpixe/ .

All channels are processed, including the alpha channel (if applicable).
The channel values in the buffer are stored consecutively.

The functions work for all pixel depths supported in the library. The ROI
and mask are ignored.

Example 4-7 on the next page illustrates the usage of the function
iplGetPixel()



Image Creation and Access

Example 4-7 Using the Function iplGetPixel()

int example_1001( void ) {
char pixel[4]; /Il buffer to get pixel data

/Il roi to set different data in different channels

IpIROI' ro i ={0, 00, 44}

Iplimage *img = iplCreatelmageHeader(
4, 4, IPL_DEPTH_8U, "RGBA", "BGRA",
IPL_DATA ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, &roi, NULL,
NULL, NULL);

/Il alpha-channel will be 4
iplAllocatelmage( img, 1, 4 );
roi.coi = 1;

iplSet( img, 1 );

roi.coi = 2;

iplSet( img, 2 );

roi.coi = 3;

iplSet( img, 3 );

iplGetPixel( img, 0,0, pixel );

iplDeallocate( img, IPL_IMAGE_ALL & ~IPL_IMAGE_ROI );
return IPL_StsOk == iplGetErrStatus();

4-39



Intel® Image Processing Library Reference Manual

4-40

Scales the image data.

IPLStatus iplScale (const Iplimage* src, Iplimage* dst);

sre The source image.

dst The resultant image with data of a different type.
Discussion

The functioniplScale() converts the data of the input image to the
data type of the output imag#t .

Unlike iplConvert() , whichsaturateghe converted data as necessary,
iplScale() scalesthe data, using a linear mapping of the whole range of
the input data type onto the range of the output data type:

output value= A+ B * input value

HereA andB are such that the minimum and maximum presentable values
of the input data typestc_type_min  andsrc_type_max ) are mapped,
respectively, to the minimum and maximum presentable values of the
output data typedst type_min  anddst_type_max ):

B = (dst_type_max —dst _type_min )l(src_type_max —src_type _min )
A=dst type min —B* src_type min

The input and output images must have the same data ordering and
coordinate origins. The data typesdfe anddst must be different. The
supported data types for input and output images are 8-bit per channel
(signed or unsigned), 16 bit per channel (signed or unsigned), or 32-bit
signed. (For converting image data to and from 32-bit floating-point data
type, use the functiompiScaleFP .)

Return Value

If the execution is successful, the function retuiis StsOK ; otherwise, it
returns an error status code.



Image Creation and Access

ScaleFP

Converts the image data to
and from floating-point type
by scaling.

IPLStatus iplScaleFP (const Iplimage* src, Ipllmage*  dst,
float minVal, float maxVal),

srclmage The source image.

dstimage The resultant image.

minVal, maxVal The floating-point data rangen(nval <maxVval).
Discussion

The functioniplScaleFP() converts the data of the input image to

the data type of the output imaget by scaling. One of the images must
contain data of 32-bit floating-point type; the other image’s bit depth can
be 8-bit per channel (signed or unsigned), 16 bit per channel (signed or
unsigned), or 32-bit signed.

If the inputimage data is 32-bit floating-point, the function linearly maps
the user-defined floating-point data ranger{val/ .. maxVval] onto the

whole range of the output data types{ type_min .. dst_type_max ].If
some of the input floating-point values are outside the specified input data
range finval .. maxVal], the corresponding output values will saturate.
(To determine the actual floating-point data range in your image, use the
functionipIMinMaxFP_.)

If the outputimage data is 32-bit floating-point, the function linearly maps
the whole range of the intput data typed type min .. src_type_max |
onto the user-defined floating-point data rangeial .. maxval].

Return Value

If the execution is successful, the function retuiis StsOK ; otherwise, it
returns an error status code.

4-41



Intel® Image Processing Library Reference Manual

4-42

Noiselmage

Generates noise signal
and adds it to an image
data.

IPLStatus ipINoiselmage ( Iplimage* image ,
const IpINoiseParam* noiseParam );

image Pointer to the image header structure.

noiseParam Pointer to the structure that contains parameters
for the noise generator.

Discussion

The functionipiNoiselmage() generates a random noise signal and adds

it to a source imagénage that is passed to this function as an argument.

The resulting pixel values that exceed the output data range are saturated to
the respective data-range limits. The noise signal can have either uniform

or Gaussian distribution. Before callifgNoiselmage() you must first
initialize thenoiseParam structure using one of the initialization functions
described below.

To obtain an output image which contains pure noise, call

ipINoiselmage() using a source image with zero data as input.

Return Value

If the execution is successful, the function retuiitis StsOK ; otherwise, it
returns an error status code.



Image Creation and Access

NoiseUniforminit,
NoiseUniforminitFp

Initializes parameters
for generating noise
signal with uniform
distribution.

void ipINoiseUniforminit ( IplINoiseParam* noiseParam
unsigned int seed, int low, int  high);

void ipINoiseUniformlInitFp ( IplINoiseParam* noiseParam ,
unsigned int seed, float low, float high );

noiseParam Pointer to the structure that contains parameters
for the noise generator.

seed The initial seed value for the pseudo-random
number generator.

low, high The lower and upper bounds for the range of
uniformly distributed values.

Discussion

Use functionspINoiseUniforminit(), ipINoiseUniformInitFp() to
initialize thenoiseParam structure if you want to generate the noise signal
with uniform distribution over the rangeéo|v, high ]. After that you can

call theipINoiselmage() function, which actually generates and adds
the noise signal.

4-43



Intel® Image Processing Library Reference Manual

4-44

NoiseGaussianinit,
NoiseGaussianlnitFp

Initializes parameters
for generating noise
signal with Gaussian
distribution.

void ipINoiseGaussianinit ( IplINoiseParam* noiseParam
unsigned int seed, int mean, int stDev);

void ipINoiseGaussianinitFp ( IplINoiseParam* noiseParam ,
unsigned int seed, float mean, float stDev );

noiseParam Pointer to the structure that contains parameters
for the noise generator.

seed The initial seed value for the pseudo-random
number generator.

mean The mean of the Gaussian distribution.

stDev The standard deviation of the Gaussian
distribution.

Discussion

Use functionsplNoiseGaussianinit(), ipINoiseGaussianinitFp()

to initialize thenoiseParam structure if you want to generate the noise
signal with Gaussian distribution that has the mean vales and
standard deviatiostDev . After that you can call th@INoiselmage()
function, which actually generates and adds the noise signal.



Image Creation and Access

Working in the Windows DIB Environment

The Image Processing Library provides functions to convert images to and
from the Windows* device-independent bitmap (DIBable 4-2shows

that thelplimage  format can represent more features than the DIB image
format. However, the DIB palette images and 8-bit- and 16-bit-per-pixel
absolute color DIB images have no equivalent in the Image Processing
Library.

The DIB palette images must be first converted to the Image Processing
Library’s absolute color images; 8-bit- and 16-bit-per-pixel DIB images
have to be unpacked into the library’s 8-bit-, 16-bit- or 32-bit-per-channel
images.

Any 24-bit absolute color DIB image can be directly converted to the
Image Processing Library format. You just need to createlamge

header corresponding to the DIB attributes. The DIB image data can be
pointed to by the header or it can be duplicated.

There are the following restrictions for the DIB conversion functions:
* You can useplimage structures with unsigned data only.

« The DIB and IPL images should be the same size. The following
functions can perform conversion to and from the DIB format, with
additional useful capabilities:

iplTranslateDIB() Performs a simple translation of a DIB image to
aniplimage as described above. Also converts a
DIB palette image to the Image Processing
Library’s absolute color image.

While this is the most efficient way of converting
a DIB image, it is not the most efficient format
for the library functions to manipulate because
the DIB image data is doubleword-aligned, not
quadword-aligned.

4-45



Intel® Image Processing Library Reference Manual

4-46

iplConvertFromDIB(),
iplConvertFromDIBSep()

iplConvertToDIB(),
iplConvertToDIBSep()

Provides more control of the conversion and can
convert a DIB image to an image with a prepared
Iplimage header. The header must be set to the
desired attributes. The bit depth of the channels in
thelplimage header must be equal to or greater
than that in the DIB header.

Converts anplimage to a DIB image. This
function performs dithering if the bit depth of the
DIB is less than that of thelimage . It can also
be used to create a DIB palette image from an
absolute colofplimage . The function can
optionally create a new palette.



Image Creation and Access

TranslateDIB

Translates a DIB image
into the corresponding

Iplilmage
ipllmage* iplTranslateDIB(BITMAPINFOHEADER* dib ,
BOOL* cloneData );
dib The DIB image.
cloneData An output flag (Boolean): if false, indicates that

the image data pointer in thgimage  will point
to the DIB image data; if true, indicates that the
data was copied.

Discussion

The functioniplTranslateDIB() translates a DIB image to the

Iplimage format; see Example 4-8. Theimage attributes
corresponding to the DIB image are automatically chosenTséé 4-3,

s0 no explicit control of the conversion is provided. A DIB palette image
will be converted to an absolute colpfimage with a bit depth of 8 bits
per channel, and the image data will be copied, returning

cloneData = true.

A 24-bit-per-pixel RGB DIB image will be converted to an 8-bit-per-
channel RGBplimage

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBAplimage with an alpha channel.

An 8-bit-per-pixel or 16-bit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel R@Bage
The image data will be copied, returningnebata = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scale image witlsi@ndard
gray palettewill be converted to a 1-bit-per-channel or 8-bit-per-channel
gray-scaleplimage , respectively.

4-47



Intel® Image Processing Library Reference Manual

4-48

Example 4-8 Translating a DIB Image Into an Iplimage

int example47( void ) {
#define WIDTH 8
#define HEIGHT 8

BITMAPINFO *dib; /I pointer to bitmap
RGBQUAD *rgb; /I pointer to bitmap colors
unsigned char *data; /I pointer to bitmap data

BITMAPINFOHEADER *dibh; // header beginning
Iplimage *img = NULL;

BOOL cloneData; /I variable to get result
int i;

_try {

int size = HEIGHT * ((WIDTH+3) & ~3);

/I allocate memory for bitmap

dib = malloc(sizeof(BITMAPINFOHEADER)
+ sizeof(RGBQUAD)*256 + size );

if( NULL == dib ) return O;

/I define the pointers

dibh = (BITMAPINFOHEADER*)dib;
rgb=(RGBQUAD*)((char*)dib + sizeof(BITMAPINFOHEADER));
data=(unsigned char*)((char*)rgb+sizeof(RGBQUAD)*256);

/I define bitmap
dibh->biSize = sizeof(BITMAPINFOHEADER);
dibh->biwidth = WIDTH;
dibh->biHeight = HEIGHT;
dibh->biPlanes = 1;
dibh->biBitCount = 8;
dibh->biCompression = BI_RGB,;
dibh->biSizelmage = size;
dibh->biClrUsed = 256;
dibh->biClrimportant = 0;
continued [J



Image Creation and Access

Example 4-8 Translating a DIB Image Into an Iplimage  (continued)

/I fill in colors of the bitmap

for( i=0; i<256; i++)
rgb[i].rgbBlue = rgbl[i].rgbGreen = rgb[i].rgbRed =
(unsigned char)i;

/I set the bitmap data

for( i=0; i<WIDTH*HEIGHT; i++)
datafi] = (unsigned char)(100 + i);

/I create ipl image using the bitmap

if( NULL==(img = iplTranslateDIB( dibh,&cloneData )))

return O;
}
_ finally {
int flags = IPL_IMAGE_HEADER;
if( cloneData ) flags |= IPL_IMAGE_DATA;
if( dib ) free( dib );
ipIDeallocate( img, flags );
}

return IPL_StsOk == iplGetErrStatus();

A 4-bit-per-pixel gray-scale DIB image with a standard gray palette will be
converted into an 8-bit-per-pixel gray-scalemage and the image data
will be copied, returningloneData = true.

If cloneData is false, the data in the output image will be 4-byte-aligned;
if cloneData is true, the output image will have 32-byte-aligned data.

Note that if image data is not copied, the library functions inefficiently
access the data. This is because DIB image data is aligned on doubleword
(4-byte) boundaries. Alternatively, wherneData is true, the DIB image
data is replicated into newly allocated image data memory and
automatically aligned to 32-byte boundaries, which results in a better
memory access.

4-49



Intel® Image Processing Library Reference Manual

4-50

Return Value

The constructetblimage . If no memory is available in the system to
allocate theplimage header or image datapLLvalue is returned.

ConvertFromDIB

Converts a DIB image to
an Iplimage  with
specified attributes.

void iplConvertFromDIB(BITMAPINFOHEADER* dib ,
Iplimage*  image)

dib The input DIB image.

image Thelplimage header with specified attributes. If
the data pointer isiULL, image data memory will
be allocated and the pointer set to it.

Discussion

The functioniplConvertFromDIB() converts DIB images to Image
Processing Library images according to the attributes set ipthege
header; see Example 4-9. If the image data pointevis.and there is no
memory to allocate the converted image data, the conversion will be
interrupted and the function will returnNaULL pointer.

The following constraints apply to the conversion:

e The bit depth per channel of th&image should be greater than or
equal to that of the DIB image.

¢ The number of channels (not including the alpha channel) in the
Iplimage  should be greater than or equal to the number of channels in
the DIB image (not including the alpha channel if present).



Image Creation and Access

¢ The dimensions of the convertgdmage should be greater than or
equal to that of the DIB image. When the converted image is larger
than the DIB image, the origins gfimage and the DIB image are
made coincident for the purposes of copying.

¢ When converting a DIB RGBA image, the destinatipimage
should also contain an alpha channel.

Example 4-9 Converting a DIB Image Into an Iplimage

int example48( void ) {

BITMAPINFO *dib; /I pointer to bitmap
RGBQUAD *rgb; /I pointer to bitmap colors
unsigned char *data; /I pointer to bitmap data

BITMAPINFOHEADER *dibh; /I header beginning
Iplilmage *img = NULL;
int i;
_try {
int size = HEIGHT * ((WIDTH+3) & ~3);
/| allocate memory for bitmap
dib = malloc(sizeof(BITMAPINFOHEADER)
+ sizeof(RGBQUAD)*256 + size );
iflt NULL == dib ) return 0;
/I define corresponedt pointers
dibh = (BITMAPINFOHEADER¥*)dib;
rgb=(RGBQUAD*)((char*)dib + sizeof(BITMAPINFOHEADER));
data = (unsigned char*)((char*)rgb +
sizeof(RGBQUAD)*256);
/I define bitmap
dibh->biSize = sizeof(BITMAPINFOHEADER);
dibh->biwidth = WIDTH;
dibh->biHeight = HEIGHT;
dibh->biPlanes = 1;
dibh->biBitCount = 8;
continued [J

4-51



Intel® Image Processing Library Reference Manual

Example 4-9 Converting a DIB Image Into an Iplimage  (continued)

dibh->biCompression = BI_RGB,;

dibh->biSizelmage = size;

dibh->biClrUsed = 256;

dibh->biClrimportant = 0;

/I fill in colors of the bitmap

for( i=0; i<256; i++)
rgb[i].rgbBlue = rgb[i].rgbGreen = rgb[i].rgbRed=

(unsigned char)i;

/I set the bitmap data

for( i=0; i<KWIDTH*HEIGHT; i++)
data[i] = (unsigned char)(100 + i);

/I create header of the desired image

img = iplCreatelmageHeader( 1,0, IPL_DEPTH_16U,
"GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,
IPL_ORIGIN_BL, /I bottom left as in DIB
IPL_ALIGN_QWORD, WIDTH, HEIGHT, NULL, NULL, NULL,
NULL);

iflt NULL == img ) return O;

/I create ipl image converting 8u to 16u
iplConvertFromDIB ( dibh, img );
if( limg->imageData ) return O;

}

_ finally {
if( dib ) free( dib );
iplDeallocate(img,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();

As necessary, the conversion result is saturated.

4-52



Image Creation and Access

ConvertFromDIBSep

Converts a DIB image to an
Iplimage , using two arguments
for the DIB header and data.

IPLStatus iplConvertFromDIBSep (BITMAPINFOHEADER*

dibHeader , const char* dibData , Iplimage* image);
dibHeader The input DIB image header.
dibData The input DIB image data.
image Thelplimage header with specified attributes. If

the data pointer isiULL, image data memory will
be allocated and the pointer set to it.

Discussion

Similar toiplConvertFromDIB  , the functionipiConvertFromDIBSep

converts DIB images to Image Processing Library images according to the
attributes set in thelimage header. The input and output images must
satisfy the same conditions as fpiConvertFromDIB

The functioniplConvertFromDIBSep uses an additional argument for the
DIB data. This allows you to supply the DIB header and data stored
separately.

Return Value

The function returns amwLStatus  status code.

4-53



Intel® Image Processing Library Reference Manual

4-54

ConvertToDIB

Converts anplimage
to a DIB image with
specified attributes.

void iplConvertToDIB(iplimage* image, BITMAPINFOHEADER*

dib , int  dither
image
dib
dither

IPL_DITHER_FS

IPL_DITHER_JJH

, int  paletteConversion )

The inputiplimage
The output DIB image.

The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of thlimage . The following
algorithms are supported corresponding to these
dither  identifiers:

The Floid-Steinberg error diffusion dithering
algorithm is used.

The Jarvice-Judice-Ninke error diffusion
dithering algorithm is used.

IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

IPL_DITHER_BAYER

IPL_DITHER_NONE

paletteConversion

The Bayer threshold dithering algorithm is
used.

No dithering is done. The most significant
bits in the input image pixel data are
retained.

Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute colgsiimage . The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB

is used.



Image Creation and Access

IPL_PALCONV_POPULATEThe popularity palette
conversion algorithm is used.

IPL_PALCONV_MEDCUT The median cut algorithm for
palette conversion is used.

Discussion

The functioniplConvertToDIB() converts anplimage to a DIB image.

The conversion takes place according to the source and destination image
attributes. Whilaplimage format always uses absolute color, DIB images
can be in absolute or palette color. When the DIB is a palette image, the
absolute colomlimage is converted to a palette image according to the
palette conversion option specified. When the bit depth of an absolute
color DIB image is less than that of th@image , then dithering according

to the specified option is performed.

The following constraints apply when using this function:

e The number of channels in th@image should be equal to the
number of channels in the DIB image.

e The alpha channel in aplimage will be passed on only when the
DIB is an RGBA image.

ConvertToDIBSep

Converts anplimage to a
DIB image, with DIB header
and data stored separately.

IPLStatus iplConvertToDIBSep(iplimage* image ,
BITMAPINFOHEADER*dib , char*  dibData , int  dither
int  paletteConversion )

image The inputiplimage

dib The output DIB image header.

4-55



Intel® Image Processing Library Reference Manual

4-56

dibData

dither

IPL_DITHER_FS

IPL_DITHER_JJH

The output DIB image data.

The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of thelimage . The following
algorithms are supported corresponding to these
dither  identifiers:

The Floid-Steinberg error diffusion dithering
algorithm is used.

The Jarvice-Judice-Ninke error diffusion
dithering algorithm is used.

IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

IPL_DITHER_BAYER The Bayer threshold dithering algorithm is

IPL_DITHER_NONE

paletteConversion

used.

No dithering is done. The most significant
bits in the input image pixel data are
retained.

Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute colgsiimage . The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB is used.

IPL_PALCONV_POPULATE The popularity palette conversion algorithm

is used.

IPL_PALCONV_MEDCUT  The median cut algorithm for palette

Discussion

conversion is used.

The functioniplConvertToDIBSep() converts anplimage to a DIB
image with header and data stored separatelyipinanddibData .

SeeiplConvertToDIB

for more information about the conversion.



Image Arithmetic and Logical

Operations

Table 5-1

This chapter describes image processing functions that modify pixel values
using simple arithmetic or logical operations. It also includes the library
functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories: monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Image Arithmetic and Logical Operations

Group Function Name Description
Arithmetic  iplAddS Adds a constant to the image pixel values.
operations iplAddSFP
iplSubtractS Subtracts a constant from the pixel values
iplSubtractSFP or the values from a constant.
ipIMultiplyS Multiplies pixel values by a constant.
ipIMultiplySFP

ipIMultiplySScale

iplAbs
iplAdd
iplSubtract

iplSquare

Multiplies pixel values by a constant and
scales the product.

Computes absolute pixel values.
Adds pixel values of two images.

Subtracts pixel values of one image from
those of another image.

Squares the pixel values of an image.

Continued [

5-1



Intel® Image Processing Library Reference Manual

5-2

Table 5-1

Image Arithmetic and Logical Operations ( continued)

Group Function Name Description
Arithmetic  ip/Multiply Multiplies pixel values of two images.
operations i \ultiplyScale Multiplies pixel values of two images
(continued) and scales the product.
Logical iplAndS Performs a bitwise AND operation on
operations each pixel with a constant.
iplors Performs a bitwise OR operation on
each pixel with a constant.
iplXorS Performs a bitwise XOR operation on
each pixel with a constant.
ipINot Performs a bitwise NOT operation on
each pixel
ipILShiftS Shifts bits in pixel values to the left.
ipIRShiftS Divides pixel values by a constant
power of 2 by shifting bits to the right.
iplAnd Combines corresponding pixels of two
images by a bitwise AND operation.
iplOr Combines corresponding pixels of two
images by a bitwise OR operation.
ipIXor Combines corresponding pixels of two
images by a bitwise XOR operation.
Alpha- iplPreMultiplyAlpha Pre-multiplies pixel values of an image
blending by alpha values.
iplAlphaComposite Composites two images using alpha

(opacity) values.

iplAlphaCompositeC Composites two images using constant
alpha (opacity) values.

The functionspiSquare()  , ipINot() , iplPreMultiplyAlpha() ,and
iplAbs()  as well as all functions with names containing an additienal

use single input images (perform monadic operations). All other functions
in the above table use two input images (perform dyadic operations).



Image Arithmetic and Logical Operations

Monadic Arithmetic Operations

The sections that follow describe the library functions that perform
monadic arithmetic operations (note that thiereMultiplyAlpha

function is described in thdrhage Compositing Based on Opatity
section of this chapter). All these functions use a single input image to
create an output image.

AddS, AddSFP

Adds a constant to pixel
values of the source

image.

void iplAddS(Iplimage* srclmage , Iplimage* dstimage , int
value );

void iplAddSFP(Iplimage* srclmage , Iplimage* dstimage
float  value ); [* images with IPL_DEPTH_32F only */

srclmage The source image.

dstlmage The resultant image.

value The value to be added to the pixel values.
Discussion

The functions change the image intensity by adding/thes to pixel
values. A positivevalue brightens the image (increases the intensity); a
negativevalue darkens the image (decreases the intensity).



Intel® Image Processing Library Reference Manual

5-4

SubtractS, SubtractSFP

Subtracts a constant from
pixel values, or pixel
values from a constant.

void iplSubtractS(Iplimage* srclmage , Iplimage* dstimage
int  value , BOOL flip );

void iplSubtractSFP(Iplimage* srclmage ,Iplimage* dstimage
float  value , BOOL flip ); /* IPL_DEPTH_32F only */

srclmage The source image.

dstimage The resultant image.

value The value to be subtracted from the pixel values.
flip A Boolean used to change the order of subtraction.
Discussion

The functions change the image intensity as follows:

If flip is false, thevalue is subtracted from the image pixel values.
If flip is true, the image pixel values are subtracted from/the: .

MultiplyS, MultiplySFP

Multiplies pixel values
by a constant.

void ipIMultiplyS (Iplimage* srclmage , Iplimage*
int value );
void ipIMultiplySFP(Iplimage* srclmage ,Iplimage*

float  value ); /* images with IPL_DEPTH_32F only */

srclmage The source image.

dstimage

dstimage



Image Arithmetic and Logical Operations

dstlmage The resultant image.
value An integer value by which to multiply the pixel values.
Discussion
The functions change the image intensity by multiplying each pixel by a
constantalue .

MultiplySScale

Multiplies pixel values
by a constant and scales
the products.

void ipIMultiplySScale(Iplimage* srclmage , Iplimage*
dstimage , int value );

srclmage The source image.
dstimage The resultant image.

value A positive value by which to multiply the pixel values.

Discussion

The functionipIMultiplySScale() multiplies the input image pixel

values byvalue and scales the products using the following formula:
dst pixel = src_pixel * value [ max_val

wheresrc_pixel  is a pixel value of the source images; pixel is the

resultant pixel value, anatax_val is the maximum presentable pixel

value. This function can be used to multiply the image by a number

between 0 and 1.

The source and resultant images must have the same pixel depth. The
function is implemented only for 8-bit and 16-bit unsigned data types.

5-5



Intel® Image Processing Library Reference Manual

Square
Squares the pixel values
of the image.
void iplSquare(Iplimage* srclmage , Iplimage* dstimage );
srclmage The source image.
dstimage The resultant image.
Discussion
The functionipiSquare()  increases the intensity of an image by squaring
each pixel value.
Abs

Computes absolute pixel
values of the image.

void iplAbs(Iplimage* srclmage , Iplimage* dstimage );
srclmage The source image.

dstimage The resultant image.

Discussion

The functioniplAbs()  takes the absolute value of each channel in each
pixel of the image.



Image Arithmetic and Logical Operations

Dyadic Arithmetic Operations

The sections that follow describe the functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add

Combines corresponding
pixels of two images by
addition.

void iplAdd(Iplimage* srclmageA , Iplimage* srclmageB ,
Iplimage*  dstimage );

srclmageA The first source image.

srclmageB The second source image.

dstimage The resultant image obtained as
dst_pixel = srcA _pixel + srcB_pixel

Discussion

The functioniplAdd()  adds corresponding pixels of two input images to
produce the output image.

5-7



Intel® Image Processing Library Reference Manual

Subtract

Combines corresponding
pixels of two images by

subtraction.
void iplSubtract(Iplimage* srclmageA , Iplimage* srclmageB ,
Iplimage*  dstimage );
srclmageA The first source image.
srclmageB The second source image.
dstimage The resultant image obtained as:
dst_pixel — =srcA pixel - srcB_pixel
Discussion
The functioniplSubtract() subtracts corresponding pixels of two input
images to produce the output image.
Multiply

Combines corresponding
pixels of two images by
multiplication.

void ipIMultiply(Iplimage* srclmageA , Iplimage* srclmageB
Iplimage*  dstimage );

srclmageA The first source image.
srclmageB The second source image.

dstimage The resultant image.



Image Arithmetic and Logical Operations

Discussion

The functionipiMultiply() multiplies corresponding pixels of two input
images to produce the output image.

MultiplyScale

Multiplies pixel values of two
images and scales the products.

void ipIMultiplyScale(Iplimage* srclmageA , Iplimage*
srclmageB , Iplimage* dstimage );

srclmageA The first source image.

srclmageB The second source image.

dstimage The resultant image.

Discussion

The functionipIMultiplyScale() multiplies corresponding pixels of

two input images and scales the products using the following formula:
dst_pixel = srcA pixel * srcB_pixel [ max_val

wheresrcA_pixel — and srcB_pixel — are pixel values of the source
imagesgdst pixel is the resultant pixel value, amdax_val is the

maximum presentable pixel value. Both source images and the resultant
image must have the same pixel depth. The function is implemented only
for 8-bit and 16-bit unsigned data types.

5-9



Intel® Image Processing Library Reference Manual

Monadic Logical Operations

The sections that follow describe the functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS
Shifts pixel values’ bits
to the left.
void iplLShiftS(Iplimage* srclmage , Iplimage* dstimage
unsigned int nShift );
srclmage The source image.
dstimage The resultant image.
nShift The number of bits by which to shift each pixel value to
the left.
Discussion
The functioniplLShiftS() changes the intensity of the source image by

shifting the bits in each pixel value byshift  bits to the left. The positions
vacated after shifting the bits are filled with zeros.

5-10



Image Arithmetic and Logical Operations

RShiftS

Divides pixel values by a
constant power of 2 by
shifting bits to the right.

void ipIRShiftS(Iplimage* srclmage , Iplimage* dstimage

unsigned int nShift ),

srclmage The source image.

dstimage The resultant image.

nShift The number of bits by which to shift each pixel value to
the right.

Discussion

The functioniplRShiftS() decreases the intensity of the source image by
shifting the bits in each pixel value byshift  bits. The positions vacated
after shifting the bits are filled with zeros.

5-11



Intel® Image Processing Library Reference Manual

Not

Performs a bitwise NOT
operation on each pixel.

void ipINot(Iplimage* srclmage , Iplimage* dstimage );
srclmage The source image.
dstimage The resultant image.
Discussion
The functionipiNot()  performs a bitwise NOT operation on each pixel
value.
AndS
Performs a bitwise AND

operation of each pixel
with a constant.

void iplAndS(Iplimage* srclmage , Iplimage* dstimage
unsigned int value );

srclmage The source image.
dstimage The resultant image.
value The bit sequence used to perform the bitwise AND

operation on each pixel.

Discussion

The functioniplaAnds()  performs a bitwise AND operation between each
pixel value andzalue . The least significant bit(s) of theaiue are used.

5-12



Image Arithmetic and Logical Operations

orS

Performs a bitwise OR
operation of each pixel
with a constant.

void iplOrS(Iplimage* srclmage , Iplimage* dstimage ,
unsigned int value );

srclmage The source image.
dstimage The resultant image.
value The bit sequence used to perform the bitwise OR

operation on each pixel.

Discussion

The functioniplors()  performs a bitwise OR between each pixel value
andvalue . The least significant bit(s) of thea/ue are used.

5-13



Intel® Image Processing Library Reference Manual

XorS

Performs a bitwise XOR
operation of each pixel
with a constant.

void iplXorS(Iplimage* srclmage , Iplimage* dstimage ,
unsigned int value );

srclmage The source image.
dstimage The resultant image.
value The bit sequence used to perform the bitwise XOR

operation on each pixel.

Discussion

The functioniplXors()  performs a bitwise XOR between each pixel
value andvalue . The least significant bit(s) of thealue are used.

Dyadic Logical Operations

This section describes the library functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

5-14



Image Arithmetic and Logical Operations

And

Combines corresponding pixels
of two images by a bitwise AND
operation.

void iplAnd(Iplimage* srclmageA , Iplimage* srclmageB
Iplimage*  dstimage );

srclmageA The first source image.

srclmageB The second source image.

dstimage The image resulting from the bitwise operation between

input imagessrcimageA andsrcimageB .

Discussion

The functionipland()  performs a bitwise AND operation between the

values of corresponding pixels of two input images.

Or

Combines corresponding
pixels of two images by a
bitwise OR operation.

void iplOr(Iplimage* srclmageA , Iplimage* srclmageB
Iplimage*  dstimage );

srclmageA The first source image.
srclmageB The second source image.
dstimage The image resulting from the bitwise operation between

input imagessrcimageA andsrcimageB .



Intel® Image Processing Library Reference Manual

5-16

Discussion

The functioniplOR() performs a bitwise OR operation between the values
of corresponding pixels of two input images.

Xor

Combines corresponding
pixels of two images by a
bitwise XOR operation.

void iplXor(Ipllmage* srclmageA , Iplimage* srclmageB ,
Iplimage*  dstimage );

srclmageA The first source image.
srclmageB The second source image.
dstimage The image resulting from the bitwise operation between

input imagessrcimageA andsrcimageB .

Discussion

The functionipiXor()  performs a bitwise XOR operation between the
values of corresponding pixels of two input images.

Image Compositing Based on Opacity

The Image Processing Library provides functions to composite two images
using either the opacity (alpha) channel in the images or a provided alpha
value. Alpha values range from 0 (100% translucent, 0% coverage) to full
range (0% translucent, 100% coverage). Coverage is the percentage of the
pixel’'s own intensity that is visible.



Image Arithmetic and Logical Operations

Using the opacity channel for image compositing provides the capability of
overlaying the arbitrarily shaped and transparent images in arbitrary
positions. It also reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
quadruple (r, g, ba) where r, g, b, and are the red, green, blue and alpha
channels, respectively. In the formulas that follow, the Greek lattgith

subscripts always denotes the normalized (scaled) alpha value in the range
Oto 1. Itis related to the integer alpha valgaVvalue as follows:

O = aphaValue [ max val
wheremax_val is 255 for 8-bit or 65535 for 16-bit unsigned pixel data.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixel @, b., a.) inimage C is

created by overlaying a pixel,(rg,, b,, a,) from the foreground image A
over a pixel (g, g, by, a,) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

re=o,*r,+(1- o,)*a*r,
0c=0,%gat(1- a,)* 0% g,
be=0a,*b,+(1- a,)* a;*bg
The above three expressions can be condensed into one as follows:
C=a, *A+(1-0a,)*0,*B

In this example, the color of the background image B influences the color
of the resultant image through the second term ¢1,) * o, * B. The
resulting alpha value is computed as

a.=a, +(1' GA)*GB

5-17



Intel® Image Processing Library Reference Manual

5-18

Using Pre-multiplied Alpha Values

In many cases it is computationally more efficient to store the color
channels pre-multiplied by the alpha values. In the RGBA example, the
pixel (r, g, b,a) would actually be stored as @* g*a, b*a, a). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an image is
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication is that once a pixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The functioniplPreMultiplyAlpha() implements various alpha
compositing operations between two images. One of them is converting the
pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example, in
an RGBA color model image, if (r, g, loy) are the channel values for a

pixel, then upon pre-multiplication they are stored asi((ig*a, b*a, a).

AlphaComposite
AlphaCompositeC

Composite two images using
alpha (opacity) values.

void iplAlphaComposite(Iplimage* srclmageA , Iplimage*
srclmageB , Iplimage* dstimage , int  compositeType
Iplimage* alphalmageA , Iplimage* alphalmageB , Iplimage*
alphalmageDst , BOOL premulAlpha , BOOL divideMode ),



Image Arithmetic and Logical Operations

void iplAlphaCompositeC(Iplimage* srclmageA , Iplimage*
srclmageB , Iplimage* dstimage , int  compositeType , int  aA,
int aB, BOOL premulAlpha , BOOL divideMode );

srclmageA The foreground input image.
srclmageB The background input image.
dstimage The resultant output image.

compositeType ~ The composition type to perform. Séable 5-2for the
type value and description.

aA The constant alpha value to use for the source image
srclmageA . Should be a positive number.

aB The constant alpha value to use for the source image
srcimageB . Should be a positive number.

alphalmageA The image to use as the alpha channekfoimageA . If
the imagealphalmageA contains an alpha channel, that
channel is used. Otherwise channel hithalmageA is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the
Iplimage header for the image should be set
appropriately before calling this function. If the
argumentiphalmageA is NULL, then the internal alpha
channel ofsrcimageA is used. IfsrcimageA does not
contain an alpha channel, an error message is issued.

alphalmageB The image to use as the alpha channekfotmages . If
the imagealphalmageB already contains an alpha
channel, that channel is used. Otherwise channel 1 in
alphalmageB is used as the alpha channel. If this is not
suitable for the application, then the alpha channel
number in the image header for the image should be set
appropriately before calling this function. If the
argumentiphalmageB is NULL, then the internal alpha
channel ofsrcimageB is used.

5-19



Intel® Image Processing Library Reference Manual

5-20

alphalmageDst

If srcimageB does not contain an alpha channel, then
the value (1 a,) is used for the alpha, where, is a
scaled alpha value afc/imageA inthe range Oto 1.

The image to use as the alpha channebformage . If

the image already contains an alpha channel, that
channel is used. Otherwise channel 1 in the image is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the image
header for the image should be set appropriately before
calling this function. This argument can KelLL, in

which case the resultant alpha values are not saved.

premulAlpha A Boolean flag indicating whether or not the input
images contain pre-multiplied alpha values. If true, they
contain these values.

divideMode A Boolean flag related tpremulAipha . When true, the
resultant pixel color (se€able 5-3 is further divided by
the resultant alpha value to get the final resultant pixel
color.

Discussion

The functioniplAlphaComposite() performs an image compositing

operation by overlaying the foreground image/mageA with the
background imagercimageB  to produce the resultant imagetimage .

The functioniplAlphaComposite() executes under one of the following
conditions for the alpha channels:



Image Arithmetic and Logical Operations

e If alphalmageA andalphalimageB are bothNULL, then the internal
alpha channels of the two input images specified by their respective
Ipllmage headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srclmageB does not have an alpha channel, then its alpha value is set
to (1- a,) wherea, is the scaled alpha value of image/mageA in
therange Oto 1.

» If both alpha images/phalmageA andalphalmageB are notNULL,
then they are used as the alpha values for the two input images. If
alphalmageB  is NULL, then its alpha value is set to {1a,) wherea,,
is the scaled alpha value of imagehaimageA inthe range Oto 1.

Itis an error if none of the above conditions is satisfied.

If alphalmageDst is NOtNULL, then the resultant alpha values are written
toit. If itis NULLand the output imagenageDst contains an alpha
channel (specified by thelimage header), then it is set to the resulting
alpha values.

The functioniplAlphaCompositeC() is used to specify constant alpha
valueso, anda, to be used for the two input images (usuallyis set to
the value 1= a,). The resultant alpha values (also constant) are not saved.

The type of compositing is specified by the argumentposite Type
which can assume the values show @ble 5-2

The functionsiplAlphaCompositeC() and iplAlphaCompositeC()
can be used for unsigned pixel data only. They support ROI, mask ROl and
tiling.

5-21



Intel® Image Processing Library Reference Manual

Table 5-2 Types of Image Compositing Operations

Type  Output Pixel  Output Pixel Resultant

(see Note) (pre-mult. a) Alpha Description
OVER a,*A+ A+(l-a, )*B a,+ A occludes B
(1- ay)*ag*B (1-a,)* oy
IN O, *A* ag A*ag a,*ag A within B. A acts as a

matte for B. A shows only
where B is visible.

ouT 0, *A*(1-ag)  A*(1-ap) a, *(1-ag) A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

ATOP o, *A*ag+ A*agt+ aagt Combination of (A IN B) and
(B OUT A). B is both back-

_ * * - * - *
(1-o)ra"B  (1-a,)B (1-0)" g ground and matte for A.

XOR 0, *A*(1-0)+  A*(1-ap)+ a,*(1- ag)+ Combination of (A OUT B)
and (B OUT A). Aand B
mutually exclude each
other.

(1-a)*0x*B (1-a,)*B (1-a)* oy

PLUS a,*A+0,*B A+B a,+ 0y Blend without precedence

NOTE. In Table 5-2, the resultant pixel value is divided by the resultant

alpha whendivideMode is set to true (see the argument descriptions for
theiplAlphaComposite() function). The Greek lettar here and below
denotes normalized (scaled) alpha values in the range O to 1.

For example, for the OVER operation, the output C for each pixel in the
inputs A and B is determined as

C=a,*A+(1-0a,)*0,*B

5-22



Image Arithmetic and Logical Operations

The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alpha values, C is determined as

C=A+(1- a,)*B

The resultant alpha value (alpha in the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) franfalpha
in the source image A) angB (alpha in the source image B):

aC=GA+(1_ GA)*GB

Thus, to perform an OVER operation, use thie COMPOSITE_OVER
identifier for the argumentompositeType . For all other types, use
IPL_COMPOSITE_IN, IPL_COMPOSITE_OUT IPL_COMPOSITE_ATOR
IPL_COMPOSITE_XORand IPL_COMPOSITE_PLUS respectively.

The argumentiivideMode is typically set to false to give adequate results
as shown in the above example for an OVER operation aiidlie 5-2
WhendivideMode is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel value, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C=@,*A+(1- a,)*a,*B)a,
There is no change in the valueaf, and it is computed as shown above.
When both A and B are 100% transparent (thatijsis zero and, is

zero),a.. is also zero and the result cannot be determined. In many cases,
the value ofu.. is 1, so the division has no effect.

5-23



Intel® Image Processing Library Reference Manual

5-24

PreMultiplyAlpha

Pre-multiplies alpha
values of an image.

void iplPreMultiplyAlpha (Iplimage* image ,
int alphaValue );

image The image for which the alpha pre-multiplication is
performed.
alphaValue The global alpha value to use in the range 0 to 256. If

this value is negative (for examplel), the internal
alpha channel of the image is used. Itis an error
condition if an alpha channel does not exist.

Discussion

The functioniplPreMultiplyAlpha() converts an image to the pre-
multiplied alpha form. If (R, G, B, A) are the red, green, blue, and alpha
values of a pixel, then the pixel is stored as R&*a, B*a, A) after
execution of this function. Her is the pixel's normalized alpha value in
therange Oto 1.

Optionally, a global alpha valugphaValue can be used for the entire
image. Then the pixels are stored asRG*a, B*a, alphaValue ) if the
image has an alpha channel or (R'G*a, B*a) if the image does not
have an alpha channel. Haxds the normalizediphaValue inthe range
Oto 1.

The function iplPreMultiplyAlpha() can be used for unsigned pixel
data only. It supports ROI, mask ROI and tiling.



Image Filtering

This chapter describes linear and non-linear filtering operations supported
by the Image Processing Library. Most linear filtering is performed through
convolution, either with user-defined convolution kernels or with the
provided fixed filter kernels. Table 6-1 lists the filtering functions.

Table 6-1

Image Filtering Functions

Group

Function Name

Description

Linear Filters

2-dimensional Convolution
Linear Filters

Non-linear Filters

ipIBlur

ipICreateConvKernel
ipICreateConvKernelChar

ipICreateConvKernelFP

iplGetConvKernel
iplGetConvKernelChar

iplGetConvKernelFP

ip/DeleteConvKernel
ipIDeleteConvKernelFP

ip/Convolve2D
ip/Convolve2DFP

iplConvolveSep2D
ip/ConvolveSep2DFP

iplFixedFilter

ipIMedianFilter

ip/ColorMedianFilter

ipIMaxFilter
ipIMinFilter

Applies a simple neighborhood
averaging filter.

Creates a convolution kernel.

Reads the attributes of a
convolution kernel.

Deallocates a convolution
kernel.

Convolves an image with one or
more convolution kernels.

Convolves an image with a
separable convolution kernel.

Convolves an image with a
predefined kernel.

Applies a median filter.
Applies a color median filter
Applies a maximum filter.

Applies a minimum filter.

6-1



Intel® Image Processing Library Reference Manual

Linear Filters

Linear filtering includes a simple neighborhood averaging filter, 2D
convolution operations, and a number of filters with fixed effects.

Blur

Applies simple neighborhood
averaging filter to blur the
image.

void ipIBlur(Ipllmage* srclmage , Iplimage* dstimage
int  nCols , int nRows, int anchorX , int anchor Y);

srclmage The source image.

dstlmage The resultant image.

nCols Number of columns in the neighborhood to use.
NRows Number of rows in the neighborhood to use.
anchorX, anchorY The [x, y] coordinates of the anchor cell in the

neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be/fCols -1, nRows-1 ]. For a 3 by

3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The functionipIBlur() sets each pixel in the output image as the average
of all the input image pixels in the neighborhood of sizews by nCols

with the anchor cell at that pixel. This has the effect of smoothing or
blurring the input image. The linear averaging filter of an image is also
called a box filter.



Image Filtering

2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in a variety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

NOTE. In some literature sources, the 2D convolution is referred to as
box filtering, which is an incorrect use of the term. A box filter is a linear
averaging filter (see functiopiBlur  above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, a rectangular kernel is used. The kernel is a matrix of
signed integers or single-precision real values. The kernel could be a single
row (a row filter) or a single column (a column filter) or composed of

many rows and columns. There is a cell in the kernel called the “anchor,”
which is usually a geometric center of the kernel, but can be skewed with
respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as

ym.n = zi zk h\‘k )g‘n-\‘n-k

wherex_, . is the input pixel value anti, denotes the kernel. Optionally,
the output pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple kernels
which eliminates the need of storing the intermediate results when using
each kernel. The functiongConvolve2D() andiplConvolve2DFP()

can implement both ways.

6-3



Intel® Image Processing Library Reference Manual

6-4

In addition,ipIConvolveSep2D()  , a convolution function that uses
separable kernels, is also provided. It works with convolution kernels that
are separable into theandy components.

Before performing a convolution, you should create the convolution kernel
and be able to access the kernel attributes. You can do this using

the functionsplCreateConvKernel() , iplGetConvKernel() ,
iplCreateConvKernelFP() andiplGetConvKernelFP()

In release 2.0, the functiopiFixedFilter() function has been added to

the library. It allows you to convolve images with a number of commonly
used kernels that correspond to Gaussian, Laplacian, highpass, and gradient
filtering.

Also, for compatibility with previous releases, the functions
iplCreateConvKernelChar() andiplGetConvKernelChar() have
been added. They use 1-bytexr kernel values, as opposed to integer
kernel values inplCreateConvKernel() andiplGetConvKernel()



Image Filtering

CreateConvKernel, CreateConvKernelChar,
CreateConvKernelFP

Creates a convolution
kernel.

IplIConvKernel* iplCreateConvKernel(int nCols , int  nRows,
int anchorX , int anchorY , int* values , int nShiftR );

IplIConvKernel* iplCreateConvKernelChar(int nCols , int

nRows, int anchorX , int anchorY , char* values , int

nShiftR );

IplIConvKernelFP* iplCreateConvKernelFP(int nCols , int

nRows, int anchorX , int anchorY , float * values );

nCols The number of columns in the convolution kernel.
nRows The number of rows in the convolution kernel.
anchorX, anchoryY The [X, y] coordinates of the anchor cell in the

kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be/fjCols -1, nRows-1 ]. For a 3 by

3 kernel, the coordinates of the geometric center
would be [1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactlyrows*nCols entries in this
array. For example, the array [1, 2, 3, 4,5, 6, 7, 8,
9] would represent the following kernel matrix:

123
456
789

6-5



Intel® Image Processing Library Reference Manual

6-6

nShiftR Scale the resulting output pixel by shifting it to
the rightnshiftr  times.

Discussion

FunctionsplCreateConvKernel() andiplCreateConvKernelFP() are
used to create convolution kernels of arbitrary size with arbitrary anchor
point. The functionplCreateConvKernelChar() serves primarily for
compatibility with previous releases of the library. It usesr rather than
integer input values to creates the same kernel as

iplCreateConvKernel()

Return Value

A pointer to the convolution kernel structurgConvKernel

GetConvKernel, GetConvKernelChar
GetConvKernelFP

Reads the attributes of a
convolution kernel.

void iplGetConvKernel(IplIConvKernel* kernel , int* nCols ,
int*  nRows, int* anchorX , int* anchorY , int** values
int*  nShiftR );

’

void iplGetConvKernelChar(lplConvKernel* kernel , int*
nCols , int* nRows, int* anchorX , int* anchorY , char**
values , int* nShiftR );

void iplGetConvKernelFP(IplIConvKernelFP* kernel , int*

nCols , int* nRows, int* anchorX , int* anchorY , float**

values );

kernel The kernel to get the attributes for. The attributes

are returned in the remaining arguments.



Image Filtering

nCols, nRows

anchorX, anchorY

values

nShiftR

Discussion

Numbers of columns and rows in the convolution
kernel. Set by the function.

Pointers to the [X, y] coordinates of the anchor
cell in the kernel. (SemICreateConvKernel
above.) Set by the function.

A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactlynrRows* nCols entries in this array.
For example, the array [1, 2, 3,4, 5,6, 7, 8, 9]
would represent the kernel matrix

123

456

789

A pointer to the number of bits to shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

FunctionspiGetConvKernel() andiplGetConvKernelFP() are used to
read the convolution kernel attributes. Tihi&etConvKernelChar()

function serves primarily for compatibility with previous releases. It gives
you 1-bytechar rather than integer values of the convolution kernel; you'll
probably need this function only if you create kernels using
ipICreateConvKernelChar()

6-7



Intel® Image Processing Library Reference Manual

6-8

DeleteConvKernel
DeleteConvKernelFP

Deletes a convolution

kernel.
void iplDeleteConvKernel(IlplIConvKernel* kernel );
void iplDeleteConvKernelFP(IplConvKernelFP* kernel ),
kernel The kernel to delete.
Discussion
FunctionspiDeleteConvKernel() andiplDeleteConvKernelFP()
must be used to delete convolution kernels created, respectively, by
iplCreateConvKernel() andiplCreateConvKernelFP()
Convolve2D
Convolve2DFP

Convolves an image
with one or more
convolution kernels.

void iplConvolve2D(Iplimage* srclmage , Iplimage* dstimage
IpIConvKernel** kernel , int  nKernels , int  combineMethod );
void iplConvolve2DFP(Iplimage* srclmage , Iplimage* dstimage
IpIConvKernelFP** kernel , int  nKernels , int  combineMethod );
srclmage The source image.

dstlmage The resultant image.

kernel A pointer to an array of pointers to convolution

kernels. The length of the arrayigernels .



Image Filtering

nKernels The number of kernels in the arraymel . The
value ofnKernels can be 1 or more.

combineMethod The way in which the results of applying each
kernel should be combined. This argument is
ignored when a single kernel is used. The
following combinations are supported:

IPL_SUM Sums the results.

IPL_SUMSQ Sums the squares of the results.

IPL_SUMSQROOTSuUmSs the squares of the results
and then takes the square root.

IPL_MAX Takes the maximum of the results.

IPL_MIN Takes the minimum of the results.

Discussion

FunctionsplConvolve2D() andiplConvolve2D() are used to convolve
an image with a set of convolution kernels. The results of using each kernel
are then combined using tlkembineMethod argument; see Example 6-1.

Example 6-1 Computing the 2-dimensional Convolution

int example61( void ) {
Iplilmage *imga, *imgb;
int one[9] = {1,0,1, 0,0,0, 1,0,1}; // a kernel to check
IplConvKernel* kernel; /I REFLECT border mode
_try {
int i;
imga= iplCreatelmageHeader( 1, 0, IPL_DEPTH_8U, "GRAY",
"GRAY", IPL_DATA_ ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL, NULL, NULL);
continued [

6-9



Intel® Image Processing Library Reference Manual

Example 6-1 Computing 2-dimensional Convolution (continued)

}

if( NULL == imga ) return O;

iplSetBorderMode( imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP]|
IPL_SIDE_BOTTOM]|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

iplAllocatelmage( imga, 0, 0 );

if( NULL == imga->imageData ) return O;

/I fill image by meaningless

for( i=0; i<16; i++)
((char*)imga->imageData)[i] = (char)(i+1);

iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I create kernel 3x3 with (1,1) cross point

kernel = iplCreateConvKernel( 3, 3, 1, 1, one, 0 );

/I convolve imga by kernel and place the result in imgb

iplConvolve2D( imga, imgb, &kernel, 1, IPL_SUM );

/I Check if an error occurred

if( iplGetErrStatus() != IPL_StsOk ) return O;

_ finally {
ipIDeleteConvKernel( kernel );
iplDeallocate( imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );
iplDeallocate( imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );

}

return IPL_StsOk == iplGetErrStatus();

6-10



Image Filtering

ConvolveSep2D, ConvolveSep2DFP

Convolves an image with a
separable convolution kernel.

void iplConvolveSep2D (Iplimage* srclmage
Iplimage* dstimage , IplConvKernel* XKernel ,
IplConvKernel* yKernel );

void iplConvolveSep2DFP (Iplimage* srclmage
Iplimage* dstimage , IplConvKernelFP* xKernel
IpIConvKernelFP* yKernel );

srclmage The source image.

dstlmage The resultant image.

XxKernel Thex or row kernel. Must contain only one row.
yKernel They or column kernel. Must contain only one column.
Discussion

The functiongplConvolveSep2D() andiplConvolveSep2DFP() are
used to convolve the input imagecimage  with the separable kernel
specified by the row kernelkerne/ and column kernelkernel . The

functions write the convolution results to the output imagemnage .

UseiplConvolveSep2DFP() only for images with 32-bit floating-point
data. For all other image data types, ws€onvolveSep2D()

One of the kernel argumentgernel or ykernel  (but not both) can be
NULL, for example:

iplConvolveSep2DFP (src, dst, xKernel, NULL);
iplConvolveSep2DFP (src, dst, NULL, yKernel);

6-11



Intel® Image Processing Library Reference Manual

FixedFilter

Convolves an image with a
predefined kernel.

int iplFixedFilter(Ipllmage* srclmage
Iplimage* dstimage , IplFilter filter );
srclmage The source image.
dstlmage The resultant image.
filter One of predefined filter kernels (s@éscussiorfor
supported filters).
Discussion
The functioniplFixedFilter() is used to convolve the input image

srclmage  with a predefined filter kernel specified biyfer . The
resulting output image isstimage .

Thefiter ~ kernel can be one of the following:

IPL_PREWITT_3x3_V A gradient filter (vertical Prewitt operator).
This filter uses the kernel

-1 0 1

-1 0 1

-1 0 1

IPL_PREWITT_3x3_H A gradient filter (horizontal Prewitt operator).
This filter uses the kernel
11 1
0 0 O
-1 -1 -1
IPL_SOBEL_3x3_V A gradient filter (vertical Sobel operator).
This filter uses the kernel
-1 0 1
2 0 2
-1 0 1

6-12



Image Filtering

IPL_SOBEL_3x3_H A gradient filter (horizontal Sobel operator).
This filter uses the kernel

1 2 1

0 00

12 -1
IPL_LAPLACIAN_3x3 A 3x3 Laplacian highpass filter.
This filter uses the kernel

-1 -1 -1

-1 8 -1

-1 -1 -1
IPL_LAPLACIAN_5x5 A 5x5 Laplacian highpass filter.
This filter uses the kernel

-1-3-4-3-1

-3 0 6 0-3

-4 620 6 -4

-3 0 6 0-3

-1-3-4-3-1
IPL_GAUSSIAN_3x3 A 3x3 Gaussian lowpass filter.
This filter uses the kernel16 , where

1 2 1
A= 2 4 2
1 2 1

These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 0.85.

IPL_GAUSSIAN_5x5 A 5x5 Gaussian lowpass filter.
This filter uses the kernel’571 , where

2 7 12 7 2
731 5231 7
A= 12 52 127 52 12
731 5231 7
2 7 12 7 2

6-13



Intel® Image Processing Library Reference Manual

These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 1.0.

IPL_HIPASS 3x3 A 3x3 highpass filter.
This filter uses the kernel
141 -1
-1 8-
141 -1
IPL_HIPASS 5x5 A 5x5 highpass filter.
This filter uses the kernel
14141 -1 -1
14141 -1 -1
1-124 -1 -1
1111 -1
1111 -1
IPL_SHARPEN_3x3 A 3x3 sharpening filter.
This filter uses the kernel
141 -1
(1/8) * -1 16 -1
141 -1

Return Value

The function returns zero if the execution is completed successfully, and a
non-zero integer if an error occurred.
Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

6-14



Image Filtering

MedianFilter

Apply a median filter to

the image.

void ipIMedianFilter(Iplimage* srclmage , Iplimage*
dstimage , int nCols , int nRows, int anchorX ,
int anchorY );

srclmage The source image.

dstlmage The resultant image.

nCols Number of columns in the neighborhood to use.
nRows Number of rows in the neighborhood to use.
anchorX, anchorY The [x, y] coordinates of the anchor cell in the

neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would befcCols -1 , nRows-1 ]. For a 3 by

3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The functioniplMedianFilter() sets each pixel in the output image as
the median value of all the input image pixel values in the neighborhood of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of removing the noise in the image.

6-15



Intel® Image Processing Library Reference Manual

Example 6-2 Applying the Median Filter

int example62( void ) {
Iplimage *imga, *imgb;
_try {

imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(t NULL == imga ) return O;

iplSetBorderMode( imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP|
IPL_SIDE_BOTTOM]|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

iplAllocatelmage( imga, 1, 10 );

if( NULL == imga->imageData ) return O;

/I make a spike

((char*)imga->imageData)[2*4+2] = (char)15;

iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I Filter imga and place the result in imgb

ipIMedianFilter( imga, imgb, 3,3, 1,1 );

if( iplGetErrStatus() != IPL_StsOk ) return O;

}
_ finally {
iplDeallocate( imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );
ipIDeallocate( imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );
}

return IPL_StsOk == iplGetErrStatus();

6-16



Image Filtering

ColorMedianFilter

Apply a color median
filter to the image.

void iplColorMedianFilter(Iplimage* srclmage , Iplimage*
dstimage , int nCols , int nRows, int anchorX , int anchory );

srclmage The source image.

dstimage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood.

Discussion

The previously described functiogiMedianFilter() processes R, G,

and B color planes of an image separately, and as a result any correlation
between color components is lost. If you want to preserve this information,
use théaplColorMedianFilter() function instead. For each input pixel,
this function computes differences between red, green, and blue
components of pixels in the neighborhood area of sevs by nCols

and the input pixel. The ‘distance’ between the input pixaid the
neighborhood pixglis formed as sum of absolute values

abs (R(i)-R(j)) + abs (G(i)-G(j)) + abs (B(i)-B(j)) .

After scanning all neighborhood area, the function sets the output value for
pixel i as the value of the neighborhood pixel with the smallest distanice to

The functioniplColorMedianFilter() supports color images with or
without alpha channel.

6-17



Image Filtering

MaxFilter
Apply a max filter to the

image.

voi d ipIMaxFilter(Ipllmage* srclmage , Iplimage* dstimage
int  nCols , int nRows, int anchorX , int anchory );

srclmage The source image.

dstlmage Theresultanimage.

nCols Numbe of columrsin the neighborhod to use.
nRows Numbe of rows in the neighborhod to use.
anchorX, anchoryY The [x, y] coordinates of the anchor cell in the

neighborhoodin this coordinaé system the top
left corne would be [0, O] ard the bottam right
corng would be[nCols -1 , nRows-1 ]. For a 3 by
3 neighbahood the coadinates of the geometric
cente would be [1, 1]. This specificatio allows
the neighborhod to be skeweal with respetto its
geometrt center.

Discussion

The function ipIMaxFilter( ) sesead pixd in the outpu image asthe
maximum value of all the input image pixel valuesin the neighborhod of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of increasig the contrasin theimage.

6-18



Intel® Image Processig Library Referene Manual

6-19

MinFilter
Apply a min filter to the

voi d ipIMinFilter(Iplimage* srclmage , Iplimage* dstimage
int  nCols , int nRows, int anchorX , int anchoryY );

srclmage The source image.

dstlmage Theresultanimage.

nCols Numbe of columrsin the neighborhod to use.
nRows Numbe of rowsin the neighborhod to use.
anchorX, anchorY The [x, y] coordinates of the anchor cell in the

neighborhood(In this coordinaé systemthe top
left corne would be [0, O] ard the bottam right
corng would be[nCols -1 , nRows-1 ]. For a 3 by
3 neighbohoad the coordinats of the geometric
cente would be[1, 1] ). This specificatio allows
the neighborhod to be skewel with respetto its
geometrt center.

Discussion

The function ipIMinFilter( ) sesead pixd in the outpu image asthe
minimum value of all the input image pixel valuesin the neighborhod of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of decreasig the contragin theimage.



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Linear Image Transforms

Table 7-1

This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform

(DCT). Table 7-1 lists the functions performing linear image transform
operations.

Linear Image Transform Functions

Group Function Name Description
Fast Fourier iplRealFft2D Computes the forward or inverse 2D
Transform (FFT) FFT of an image.

iplCcsFft2D Computes the forward or inverse 2D

FFT of an image in a complex-
conjugate format.

ipIMpyRCPack2D  Multiplies data in the RCPack format.

Discrete Cosine  ipIDCT2D Computes the forward or inverse 2D
Transform (DCT) DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and inverse
Fast Fourier Transform (FFT) on the 2-dimensional (2D) image data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of an image is
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A special format calledPack2Dis provided for this
purpose.

7-1



Intel® Image Processing Library Reference Manual

The functioniplRealFft2D() transforms a 2D image and produces the
Fourier coefficients in thecPack2D format. To complement this, function
ipICcsFft2D() is provided that uses its input kCPack2D format,

performs the Fourier transform, and produces its output as a real 2D image.
The functionsplRealFft2D() andiplCcsFft2D() together can be used

to perform frequency domain filtering of images.

RCPack2D format is defined based on the following Fourier transform
equations:

I 271jl 2riks
A= 2 2. fk,|eXP§‘—L @ex@ K Q

1o Fszjlg pgzmks@
fk"_LKJZO;AS"'eX D Hew

wherei =+/—1, f,, isthe pixel value in thé&th row andl-th column.

ol

Note that the Fourier coefficients have the following relationship:

A,;=confA ) s=1,. ,K-1;j=1.. ,L-1
A, = conjA, ) j=1,.. ,L-1;
Ay, = conjA o) s=1,. ,K-1.

Hence, to reconstruct thex complex coefficient#\ , it is enough to store
only L*K real values. The Fourier transform functions actually use
s=0,. ,K-1;j=0,. ,L/2

Other Fourier coefficients can be found using complex-conjugate relations.
Fourier coefficientsAsJ can be stored in theCPack2D format, which is a
convenient compact representation of a complex conjugate-symmetric
sequence. In theCPack2D format, the output samples of the FFT are
arranged as shown in Tables 7-2 and 7-3, wiRgeorresponds to Real
andIm corresponds to Imaginary. Table 7-4 is an example of output
samples storage fét = 4 andL = 4.



Linear Image Transforms

Table 7-2 FFT Output in RCPack2D Format for Even K
Re Ao,o Re AO,l Im Ao,l Re AO,(L-l)lZ Im AO,(L-l)lZ Re AO,L/2
ReA , ReA ; ImA, Re A1,(|_-1)/2 Im A1,(|_-1)/2 ReA
ImA, , ReA,, ImA,, ReA e IMA Ly,  IMA,,
ReAy,10 ReEA, IMA S, Re Acs e IMAG Ly, ReEAG
IMAG.0 REAL IMAL, Re A,z MAG L2 1MAGL
Re AK/z,o Re AK-l,l Im AK-l,l Re AK-l,(L-l)lZ Im AK-l,(L-l)/Z Re AK/z,L/z
(the last column is used for even L only)
Table 7-3 FFT Output in RCPack2D Format for Odd K
Re Ay, ReA,; ImAy, ReA iy, IMA Ly, ReAy,
ReA , ReA;, ImA;, Re A1,(|_-1)/2 Im Al,(L-l)/Z ReA
ImA,, ReA,; ImA,, ReA, oy IMA Ly IMA,
Re AK/Z,O Re AK-2,1 Im AK-2,1 Re AK-Z,(L-l)/Z Im AK-2,(L-1)/2 Re AK/Z,L/Z
ImA,, ReAL; IMA, Re A oz MAC e 1MAG
(the last column is used for even L only)
Table 7-4 RealFFT2D Output Sample for K=4,L =4

Re Ay,

Re Aly0

Im Alv0

ReA,,

ReA,; ImA,,
ReA;, ImA
ReA,;, ImA,,
ReA;; ImA;,

7-3



Intel® Image Processing Library Reference Manual

RealFft2D

Computes the forward or
inverse 2D FFT of an image.

void iplRealFft2D(Iplimage* srclmage , Iplimage* dstimage

srclmage

dstlmage

flags

7-4

int flags );

The source image.

The resultant image iIRCPack2D format
containing the Fourier coefficients. This image
must be a multi-channel image containing the
same number of channels @simage . The data
type for the image must be 8, 16 or 32 bits.

This image cannot be the same as the input image
srclmage  (that is, an in-place operation is not
allowed).

Specifies how to perform the FFT. This is an
integer whose bits can be assigned the following
values using bitwise logicalR

IPL_FFT_Forw Do forward transform
IPL_FFT _Inv Do inverse transform

IPL_FFT_NoScale Do inverse transform without
scaling

IPL_FFT_Uselnt Use only integer core
IPL_FFT_UseFloat Use only float core

IPL_FFT_Free Only free all working arrays
and exit.



Linear Image Transforms

Example 7-1

Discussion

The functioniplRealFft2D()
specified rectangular ROI of the input image/mage

performs an FFT on each channel in the
and writes the

Fourier coefficients ilRCPack2D format into the corresponding channel of
the output imageistimage . The output data will be clamped (saturated) to
the limitsMin andMax, which are determined by the data type of the output
image. For best results, use 32-bit data or, at least, 16-bit data.

Computing the FFT of an Image

/*

; Matlab example

»

1

rand('seed’,12345); x=round(rand(4,4)*10), fft2(x)

89 10 - 7i -9 10 + 7i
-1 + 6i 8 -21i 13 + 21 -8 - 3i
-3 10 + 1i 3 10 - 1i

-1 -6 -8+ 3 13 -2 8 +21i
Result of iplRealFft2D function:

89 10 -7 -9

-1 8 -21 13
6 10 1 2

-3 -8 3 3

*/

int example71( void ) {

Iplimage *imga, *imgb; int i;
const int src[16] = {
9, 7, 4, 1, 7, 5, 1, 7,

6, 6, 1, 9, 3, 10, 9, 43,

_try {
imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

continued [

7-5



Intel® Image Processing Library Reference Manual

Example 7-1 Computing the FFT of an Image (continued)

}

}

if( NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if( NULL == imgb ) return O;

/I Create without filling

iplAllocatelmage( imga, 0,0 );

if( NULL == imga->imageData ) return O;

/I Fill by sample data

for( i=0; i<16; i++)
((char*)imga->imageData)[i] = (char)src]i];

iplAllocatelmage( imgb, 0, 0 );
if( NULL == imgb->imageData ) return O;

iplRealFft2D( imga, imgb, IPL_FFT_Forw );
/I Compare Matlab and ipl result here
ipICcsFft2D( imgb, imga, IPL_FFT_Inv );

/I Compare source data and obtained data

/I Check if an error was occured
if( iplGetErrStatus() !'= IPL_StsOk ) return O;

finally {

iplRealFft2D( NULL, NULL, IPL_FFT_Free );
iplDeallocate(imga,|IPL_IMAGE_HEADER|IPL_IMAGE_DATA);
iplDeallocate(imgb,|PL_IMAGE_HEADER|IPL_IMAGE_DATA);

return IPL_StsOk == iplGetErrStatus();




Linear Image Transforms

CcsFft2D

Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

void iplCcsFft2D(Iplimage* srclmage , Iplimage* dstimage ,
int flags );
srclmage The source image iIRCPack2D format.
dstlmage The resultant image. This image must be a multi-channel
image containing the same number of channels as
srclmage .

This image cannot be the same as the input image
srclmage  (that is, an in-place operation is not allowed).

flags Specifies how to perform the FFT. This is an integer
whose bits can be assigned the following values using
bitwise logicalorR

IPL_FFT_Forw Do forward transform.

IPL_FFT_Inv Do inverse transform.

IPL_FFT_NoScale Do inverse transform without
scaling.

IPL_FFT_Uselnt Use only integer core.

IPL_FFT_UseFloat Use only float core.

IPL_FFT_Free Only free all working arrays and
exit.

Discussion

The functionipICcsFft2D() performs an FFT on each channel in the
specified rectangle ROI of the input image/mage and writes the output
in RCPack2D format to the imagelstimage . The output data will be
clamped (saturated) to the limitsn andMax that are determined by the
data type of the output image.

7-7



Intel® Image Processing Library Reference Manual

MpyRCPack2D

Multiplies data of two
images in the RCPack
format.

void ipIMpyRCPack2D (Iplimage* srcA , Iplimage* srcB
Iplimage*  dst);

SIcA, srcB The source images iRCPack2D format.

dst The resultant image. This image must be a multi-channel
image containing the same number of channels@s
andsrcB .

This image cannot be the same as the input images (that
is, an in-place operation is not allowed) .

Discussion

The functionipiIMpyRCPack2D() multiplies the data of the imagecA by
that ofsrcB and writes the result tost . Allimages are assumed to be in
the RCPack format, the format for storing the results of forward FFTSs.
Thus, this function multiplies the data in "frequency domain". (This
corresponds to cyclic convolution in the original data domain.)

Discrete Cosine Transform

This section describes the functions that implement the forward and inverse
Discrete Cosine Transform (DCT) on the 2D image data. The output of the
DCT for real input data is real. Therefore, unlike FFT, no special format

for the transform output is needed.



Linear Image Transforms

DCT2D

Computes the forward
or inverse 2D DCT of an

image.
void ipIDCT2D(Iplimage* srclmage , Iplimage* dstimage
int flags );
srclmage The source image.
dstlmage The resultant image containing the DCT

coefficients. This image must be a multi-channel
image containing the same number of channels as
srclmage . The data type for the image must be

8, 16 or 32 bits.

This image cannot be the same as the input image
srclmage  (that is, an in-place operation is not
allowed).

flags Specifies how to perform the DCT. This is an
integer whose bits can be assigned the following
values using bitwise logicalR

IPL_DCT Forward Do forward transform.
IPL_DCT _Inverse Do inverse transform.
IPL_DCT_Free Only free all working arrays and exit.

IPL_DCT_UselnpBuf
Use the input image array for the intermediate
calculations. The performance of DCT increases, but
the input image is destroyed. You may use this value
only if both the source and destination image data types
are 16-bit signed.

7-9



Intel® Image Processing Library Reference Manual

7-10

Discussion

The functionipiDCT2D() performs a DCT on each channel in the
specified rectangular ROI of the input imagreimage  and writes the

DCT coefficients into the corresponding channel of the output image
dstimage . The output data will be clamped (saturated) to the limits
andMax, whereMin andMax are determined by the data type of the output
image. For best results, use 32-bit data or, at least, 16-bit data.

Example 7-2 Computing the DCT of an Image

int example72( void ) {
Iplimage *imga, *imgb;
const int width = 8, height = 8;
int i, X, y;

_try {
imga = iplCreatelmageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(t NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

continued [



Linear Image Transforms

Example 7-2 Computing the DCT of an Image  (continued)

}

}

/I Create without filling
iplAllocatelmage( imga, 0,0 );
if( NULL == imga->imageData ) return O;

/I Fill by sample data

for( i=0; i<width*height; i++)
((char*)imga->imageData)[i] = (char)(i+1);

iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

ipIDCT2D( imga, imgb, IPL_DCT_Forward );

/I Now there are (width+height-1) DCT coefficients
for( y=1; y<height; y++)
for( x=1; x<width; x++)
((short*)imgb->imageData)[y*width+x]= (short)0;

/I Restore source image from some DCT coefficients
ipIDCT2D( imgb, imga, IPL_DCT_Inverse );

/I Check if an error occurred
if( iplGetErrStatus() !'= IPL_StsOk ) return O;

finally {

ipIDCT2D( NULL, NULL, IPL_DCT_Free );
iplDeallocate(imga,|PL_IMAGE_HEADER|IPL_IMAGE_DATA);
iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

return IPL_StsOk == iplGetErrStatus();

7-11



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Morphological Operations

Table 8-1

The morphological operations of the Image Processing Library are simple
erosion and dilation of an image. A specified number of erosions and
dilations are performed as part of image opening or closing operations in
order to (respectively) eliminate or fill small and thin holes in objects,
break objects at thin points or connect nearby objects, and generally
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Morphological Operation Functions

Group Function Name Description
Erode, Dilate  iplErode Erodes the image an indicated number
of times.
ipIDilate Dilates the image an indicated number of
times.
Open, Close iplOpen Opens the image while smoothing the

boundaries of large objects.

ipIClose Closes the image while smoothing the
boundaries of large objects.

8-1



Intel® Image Processing Library Reference Manual

Erode

Erodes the image.

void iplErode(Iplimage* srclmage , Iplimage* dstimage ,
int  nlterations );

srclmage The source image.

dstlmage The resultant image.

niterations The number of times to erode the image.
Discussion

The functioniplErode() performs an erosion of the imageerations

times. The way the image is eroded depends on whether it is a binary

image, a gray-scale image, or a color image.

* For abinary input image, the output pixel is set to zero if the
corresponding input pixel or any of its 8 neighboring pixels is a zero.

» For agray scale or color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

* For acolorimage, each color channel in the output pixel is set to the
minimum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of erosion is to remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (that is, objects whose
pixel values are greater than those of the background).



Morphological Operations 8

Figure 8-1 shows an example of 8-bit gray scale image before erosion (left)
and the same image after erosion of a rectangular ROI (right).

Figure 8-1 Erosion in a Rectangular ROI: the Source (left) and Result (right)

The following code (Example 8-1) performs erosion of the image inside the
selected rectangular ROI.

8-3



Intel® Image Processing Library Reference Manual

Example 8-1 Code Used to Produce Erosion in a Rectangular ROI

int example81( void ) { Iplilmage *imga, *imgb;
_try {
imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(t NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

iplAllocatelmage( imga, 1, 7 );

if( NULL == imga->imageData ) return O;

/I Create a hole

((char*)imga->imageData)[2*4+2] = 0;

/I Border is taken from the opposite side

iplSetBorderMode( imga, IPL_BORDER_WRAP,

IPL_SIDE_ALL, 0 );

iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I Erosion will increase the hole

iplErode( imga, imgb, 1 );

/I Check if an error occurred

if( iplGetErrStatus() != IPL_StsOk ) return O;

}

_ finally {
iplDeallocate(imga,|lPL_IMAGE_HEADER|IPL_IMAGE_DATA);
ipIDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();
}

8-4



Morphological Operations

% NOTE. All source image attributes are defined in the image header
‘ pointed to bysrcimage .

Dilate

Dilates the image.

void iplDilate(Iplimage* srclmage , Iplimage* dstimage , int
niterations );

srclmage The source image.

dstlmage The resultant image.

niterations The number of times to dilate the image.
Discussion

The functionipiDilate() performs a dilation of the imageterations

times. The way the image is dilated depends on whether the image is

binary, gray-scale, or a color image.

« For abinary input image, the output pixel is set to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixels is 1.

« For a gray-scale image, the output pixel is set to the maximum of the
corresponding input pixel and its 8 neighboring pixels.

* For acolorimage, each color channel in the output pixel is set to the
maximum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of dilation is to fill up holes and to thicken boundaries of objects
on a dark background (that is, objects whose pixel values are greater than
those of the background).



Intel® Image Processing Library Reference Manual

Open

Opens the image by
performing erosions
followed by dilations.

void iplOpen(lplimage* srclmage , Iplimage* dstimage ,
int  nlterations );

srclmage The source image.

dstlmage The resultant image.

nlterations The number of times to erode and dilate the
image.

Discussion

The functioniplopen()  performsniterations of erosion followed by
niterations of dilation performed byplErode()  andipIDilate() ,
respectively.

The process of opening has the effect of eliminating small and thin objects,
breaking objects at thin points, and generally smoothing the boundaries of
larger objects without significantly changing their area.

See Also

Erode

Dilate



Morphological Operations

Close

Closes the image by
performing dilations
followed by erosions.

void iplClose(Iplimage* srclmage , Iplimage* dstimage
int  nlterations );

srclmage The source image.

dstlmage The resultant image.

niterations The number of times to dilate and erode the image.
Discussion

The functionipIClose() performsniterations of dilation followed by
niterations of erosion performed biIDilate() andiplErode()
respectively.

The process of closing has the effect of filling small and thin holes in
objects, connecting nearby objects, and generally smoothing the boundaries
of objects without significantly changing their area.

See Also

Erode

Dilate

8-7



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Color Space Conversion

Table 9-1

This chapter describes the Image Processing Library functions that perform
color space conversion. The library supports the following color space
conversions:

¢ Reduction from high bit resolution color to low bit resolution color

« Conversion of absolute color images to and from palette color images

¢ Color model conversion

¢ Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absolute-to-palette and palette-to-absolute color conversionyseexing
in the Windows DIB Environmefiin Chapter 4.

Color Space Conversion Functions

Conversion Type Function Name Description
Reducing Bit ipIReduceBits Reduces the number of bits
Resolution per channel in an image.
Bitonal to gray scale ipIBitonalToGray Converts bitonal images to 8-
and 16-bit gray scale images.
Color to gray scale  iplColorToGray Convert color images to and
i from gray scale images.
and vice versa iplGrayToColor gray g
Color Models iplRGB2HSV , Convert RGB images to and
Conversion ip[HSV2RGB from HSV color model.
iplRGB2HLS , Convert RGB images to and
iplHLS2RGB from HLS color model.

continued [

9-1



Intel® Image Processing Library Reference Manual

9-2

Table 9-1

Color Space Conversion Functions  (continued)

Conversion Type

Function Name

Description

Color Models
Conversion

(continued)

Color Twist

ipRGB2LUV ,
ipLUV2RGB

ipIRGB2XYZ ,
ipIXYZ2RGB

iplIRGB2YCrChb
iplYCrCb2RGB

ipRGB2YUV ,

iplYUV2RGB
iplYCC2RGB

iplApplyColorTwist

ipICreateColorTwist

iplDeleteColorTwist

ipISetColorTwist

iplColorTwistFP

Convert RGB images to and
from LUV color model.

Convert RGB images to and
from XYZ color model.

Convert RGB images to and
from YC C, color model.

Convert RGB images to and
from YUV color model.

Convert PhotoYCC* images
to RGB color model.

Applies a color-twist matrix to
an image.

Allocates memory for color-
twist matrix data structure.

Deletes the color-twist matrix
data structure.

Sets a color-twist matrix data
structure.

Applies a color-twist matrix to
an image with floating-point
pixel values.




Color Space Conversion

Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

ReduceBits

Reduces the number of
intensity levels in an
image.

void ipIReduceBits(Iplimage* srclmage , Iplimage* dstimage ,
int noise , int ditherType , int levels );

srclmage The source image .

dstimage The resultant image.

noise The number specifying the noise added.
This parameter is set as a percentage of range
[0..100].

ditherType The type of dithering to be used.

The following types are supported:
IPL_DITHER_NONE No dithering is done

IPL_DITHER_FS The Floid-Steinberg error
diffusion dithering
algorithm

IPL_DITHER_JJH The Jarvice-Judice-Ninke
error diffusion dithering
algorithm

IPL_DITHER_STUCKEY The Stucki error
diffusion dithering
algorithm



Intel® Image Processing Library Reference Manual

IPL_DITHER_BAYER The Bayer threshold
dithering algorithm.

levels The number of output levels for halftoning
(dithering); can be varied in the range
[2..(1<< depth )] ,
wheredepth is the bit depth of the destination
image.

Discussion

The functioniplReduceBits() reduces the number of intensity levels

in each channel of the source imageimage and places the results in
respective channels of the destination imagenage .

Thelevels parameter sets the resultant number of intensity levels in each
channel of the destination image.

If the noise value is greater than 0, some random noise is added to the
threshold level used in computations; see [Schumacher]. The amplitude of
the noise signal is specified by theise parameter set as a percentage of
the destination image luminance range. For the 4x4 ordered dithering mode
(see [Bayer]) the threshold value is determined by the dither matrix used,
whereas for the error diffusion dithering mode the input threshold is set as
half of therange value, where

range = ((1<<depth) - 1)/( levels - 1)

and depth is the bit depth of the source image.



Color Space Conversion

Figure 9-1

The figure below illustrates the results of applying thiBeduceBits()

function with Stucki dithering to a source image that has 256 intensity
levels. The output images both have 2 intensity levels, the difference is in
the value of noise added for the error diffusion dithering algorithm.

Example of the source and resultant images for the bit reducing
function

Source image with 256
intensity levels

9-5



Intel® Image Processing Library Reference Manual

L

e
A

-

2k
"'\.\\"

e,

b
L
i
L

)

b

Output image Output image
(levels =2, noise =0) (levels =2, noise =20)

Table 9-2 lists the valid combinations of the source and resultant image bit
data types for reducing the bit resolution.

Table 9-2 Source and Resultant Image Data Types for Reducing the Bit

Resolution

Source Image Resultant Image

32 bits per channel 32s, 16u, 8u, 1u (1u for Gray only) bits per channel
16 bits per channel 16u, 8u, 1u (1u for Gray only) bits per channel

8 bits per channel 8u, 1u (1u for Gray only) bits per channel

9-6



Color Space Conversion

Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

BitonalToGray

Converts a bitonal
image to gray scale.

void ipIBitonalToGray(Iplimage* srclmage , Iplimage*
dstimage , int  ZeroScale , int OneScale );

srclmage The bitonal source image.

dstimage The resultant gray scale image. (See the
discussion below.)

ZeroScale The value that zero pixels of the source image
should have in the resultant image.

OneScale The value given to a resultant pixel if the
corresponding input pixelis 1.

Discussion

The functioniplBitonal ToGray() converts the input 1-bit bitonal image
srclmage 1o an 8s, 8u, 16s orl6u gray scale imagemage .

If an input pixel is 0, the corresponding output pixel is seréeScale .
If an input pixel is 1, the corresponding output pixel is sebt@Scale .

Conversion of Absolute Colors to and from Palette Colors

Since thaplimage format supports only absolute color images, this
functionality is provided only within the context of converting an absolute
color imageiplimage to and from a palette color DIB image. See the
section ‘Working in the Windows DIB Environmehin Chapter 4.

9-7



Intel® Image Processing Library Reference Manual

9-8

Conversion from Color to Gray Scale

This section describes the function that performs the conversion of absolute
color images to gray scale.

ColorToGray

Converts a color image

to gray scale.

Table 9-3

void iplColorToGray(Iplimage* srclmage , Iplimage*
dstimage );
srclmage The source image. See Table 9-3 for a list of valid

source and resultant image combinations.

dstimage The resultant image. See Table 9-3 for a list of
valid source and resultant image combinations.

Discussion

The functioniplColorToGray() converts a color source image/mage

to a gray scale resultant image&/mage .

Table 9-3 lists the valid combinations of source and resultant image bit
data types for conversion from color to gray scale.

Source and Resultant Image Data Types for Conversion from
Color to Gray Scale

Source Image (data type) Resultant image (data type)

32 bit per channel Gray scale; 1, 8, or 16 bits per pixel
16 bit per channel Gray scale; 1, 8, or 16 bits per pixel
8 bit per channel Gray scale; 1, 8, or 16 bits per pixel




Color Space Conversion

The weights to compute true luminance from linear red, green and blue are
these:

Y =0.212671 R+ 0.715160- G+ 0.072169 B

Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor

Converts a gray scale to
color image.

void iplGrayToColor (Ipllmage* srclmage , Iplimage*
dstimage, float FractR, float FractG, float FractB );

srclmage The source image. See Table 9-4 for a list of
valid source and resultant image
combinations.

dstimage The resultant image. See Table 9-4 for a list
of valid source and resultant image
combinations.

FractR,FractG, FractB The red, green and blue intensities for
image reconstruction. S&iscussiorfor a
list of valid FractR , FractG , andFractB
values.

Discussion

The functioniplGrayToColor() converts a gray scale source image
srclmage 1o a resultant pseudo-color imag&/mage . Table 9-4 lists the
valid combinations of source and resultant image bit data types for
conversion from gray scale to color.



Intel® Image Processing Library Reference Manual

9-10

Table 9-4

Source and Resultant Image Data Types for Conversion from Gray
Scale to Color

Source Image (data type) Resultant image (data type)
Gray scale 1 bit 8 bit per channel

Gray scale 8 bit 8 bit per channel

Gray scale 16 bit 16 bit per channel

Gray scale 32 bit 32 bit per channel

The equations for chrominance in RGB from luminancae:

R= FractR *Y; 0<=FractR <=1
G= FractG *Y; 0<=FractG <=1
B= FractB *Y,; 0 <=FractB <=1.

If all three values-ractr , FractG , FractB are zero, then the default
values are used in above equations so that:

R = 0.212671* Y, G = 0.715160* Y, B = 0.072169* Y.

Conversion of Color Models

This section describes the conversion of red-green-blue (RGB) images to
and from other common color models: hue-saturation-value model (HSV),
hue-lightness-saturation (HLS) model, and a number of others.

As an alternative way of color models conversion (that works only for
somecolor models) you can just multiply pixel values by a color twist
matrix; see Color Twist Matrice$ section in this chapter.

Note also that conversion of RGB images to and from the cyan-magenta-
yellow (CMY) model can be performed by a simple subtraction. You can
use the functiomplSubtractS ~ to accomplish this conversion. For
example, with maximum pixel value of 255 for 8-bit unsigned images,
theiplSubtractS() function is used as follows:

ipISubtractS( rgblmage , cmylmage, 255, TRUE)



Color Space Conversion

This call converts the RGB imaggb/mage to the CMY imagecmyimage
by setting each channel in the CMY image as follows:

C =255 -R
M =255 - G
Y =255 - B

The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.

Data ranges in the HLS and HSV Color Models

The ranges of color components in the hue-lightness-saturation (HLS) and
hue-saturation-value (HSV) color models are defined as follows:

hueH is in the range 0 to 360
lightnessl is in the range O to 1
saturatiorSis in the range O to 1
valueV is in the range 0 to 1.

In the Image Processing Library, these color components are represented
by the following integer values of hud' , lightness.’ , saturatiorS , and
valueV' :

H' = H/2 for 8-bit unsigned color channel$]’ = H otherwise,
L' = L* MAX_VAL
S = $MAX_VAL
V' =V+*MAX_ VAL

Here

MAX_VAL= 255 for 8-bit unsigned color channels,
MAX_VAL= 65,535 for 16-bit unsigned color channels,
MAX_VAL= 2,147,483,647 for 32-bit signed color channels.

9-11



Intel® Image Processing Library Reference Manual

9-12

RGB2HSV

Converts RGB images
to the HSV color model.

void ipIRGB2HSV(Iplimage* rgblmage , Iplimage* hsvimage );
rgblmage The source RGB image.

hsvimage The resultant HSV image.

Discussion

The function converts the RGB imagg/mage to the HSV image
hsvimage . The function checks that the input image is an RGB image. The
channel sequence and color model of the output image are set to HSV.

HSV2RGB

Converts HSV images
to the RGB color model.

void ipI[HSV2RGB(Iplimage* hsvimage , Iplimage* rgblmage );
hsvimage The source HSV image.

rgblmage The resultant RGB image.

Discussion

The function converts the HSV imagevimage to the RGB image
rgbimage . The function checks that the input image is an HSV image and
that the output image is RGB.



Color Space Conversion

RGB2HLS

Converts RGB images
to the HLS color model.

void ipIRGB2HLS(Iplimage* rgblmage , Iplimage* hlsimage );
rgblmage The source RGB image.

hisimage The resultant HLS image.

Discussion

The function converts the RGB imagg/mage to the HLS image

hisimage . The function checks that the input image is an RGB image. The
function sets the channel sequence and color model of the output image to
HLS.

HLS2RGB

Converts HLS images to
the RGB color model.

void ipI[HLS2RGB(Iplimage* hlsimage , Iplimage* rgblmage );
hisimage The source HLS image.

rgblmage The resultant RGB image.

Discussion

The function converts the HLS imagei/mage  to the RGB image
rgbimage ; see [Rogers85]. The function checks that the input image is an
HLS image and that the output image is RGB.

9-13



Intel® Image Processing Library Reference Manual

9-14

RGB2LUV

Converts RGB images
to the LUV color model.

void ipIRGB2LUV(Iplimage* rgblmage , Iplimage* luvimage );
rgblmage The source RGB image.

luvimage The resultant LUV image.

Discussion

The function converts the RGB imagg/mage to the LUV image
luvimage . The function checks that the input image is an RGB image; it
sets the channel sequence and color model of the output image to LUV.
The function processes 32f images only.

LUV2RGB

Converts LUV images to
the RGB color model.

void ipILUV2RGB(Iplimage* luvimage , Iplimage* rgblmage );
luvimage The source LUV image.

rgblmage The resultant RGB image.

Discussion

The function converts the LUV imagevimage to the RGB image
rgbimage . The function checks that the input image is an LUV image and
that the output image is RGB.

The function processes 32f images only.



Color Space Conversion

RGB2XYZ

Converts RGB images
to the XYZ color model.

void ipIRGB2XYZ(Iplimage* rgblmage , Iplimage* Xxyzlmage );
rgbimage The source RGB image.

xyzlmage The resultant XYZ image.

Discussion

The function converts the RGB imagg/mage to the XYZ image
xyzlmage according to the following formulas:

X=0.4124R + 0.3576G + 0.1805B

Y=0.2126R + 0.7152G + 0.0721B

Z=0.0193R + 0.1192G + 0.9505B.

The function checks that the input image is an RGB image,; it sets the
channel sequence and color model of the output image to XYZ.
Since 0.0193 + 0.1192 + 0.9505 >the Z value might saturate.

XYZ2RGB

Converts XYZ images to
the RGB color model.

void ipIXYZ2RGB(Iplimage* xyzlmage , Iplimage* rgblmage );
xyzlmage The source XYZ image.

rgblmage The resultant RGB image.

Discussion

The function converts the XYZ imagezimage to the RGB image
rgbimage . The function checks that the input image is an XYZ image and
that the output image is RGB.

9-15



Intel® Image Processing Library Reference Manual

RGB2YCrCb

Converts RGB images to
the YCrCb color model.

void ipIRGB2YCrCb(Iplimage* rgblmage , Iplimage*
YCrCblmage);

rgblmage The source RGB image.

YCrCblmage The resultant YCrCb image.

Discussion

The function converts the RGB imagg/mage to the YCrCb image
YCrCblmage (via the YUV model) according to the following formulas:
Y=0.3R+0.6G +0.1:-B
U=B-Y Cb=0.5(U+ 1)
V=R-Y Cr=V/1.6+ 0.5
The function checks that the input image is an RGB image,; it sets the
channel sequence and color model of the output image to “YCr”.

YCrCb2RGB

Converts YCrCb images
to the RGB color model.

void iplYCrCb2RGB(Iplimage* YCrCbimage, Iplimage*
rgblmage );

YCrCblmage The source YCrCb image.

rgblmage The resultant RGB image.

Discussion

The function converts the YCrCb imagerCbimage to the RGB image
rgbimage . The function checks that the input image is a YCrChb image and

that the output image is RGB.

9-16



Color Space Conversion

RGB2YUV

Converts RGB images
to the YUV color model.

void ipIRGB2YUV(Iplimage* rgblmage , Iplimage* yuvimage ),
rgbimage The source RGB image.

yuvimage The resultant YUV image.

Discussion

The function converts the RGB imagg/mage to the YUV image
yuvimage according to the following formulas:

Y=0.3R+0.6G +0.1:-B

U=B-Y

V=R-Y.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to YUV.

YUV2RGB

Converts YUV images to
the RGB color model.

void iplYUV2RGB(Iplimage* yuvimage , Iplimage* rgblmage );
yuvimage The source YUV image.

rgblmage The resultant RGB image.

Discussion

The function converts the YUV imagewvimage to the RGB image
yuvimage . The function checks that the input image is an YUV image and
that the output image is RGB.

9-17



Intel® Image Processing Library Reference Manual

9-18

YCC2RGB

Converts HLS images to
the RGB color model.

void iplYCC2RGB(Iplimage* YCClImage, Iplimage* rgblmage );
YCClmage The source YCC image.

rgblmage The resultant RGB image.

Discussion

The function converts the YCC imageCimage to the RGB image

rgbimage ; see [Rogers85]. The function checks that the input image is an
YCC image and that the output image is RGB. Both images must be 8-bit
unsigned.

Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrjy fhat

converts the three channels (a, b, ¢) into (d, e, f) according to the following
matrix multiplication by a color-twist matrix (the superscript used to
indicate the transpose of the matrix).

d, e f 1 ' =rtll t12 t13 tl4 *7a b, ¢, 1] T

t21 122 23 24

t31 32 33 t34

0 0 0 t44

To apply a color-twist matrix to an image, use the function
iplApplyColorTwist() . But first call theiplCreateColorTwist() and
iplSetColorTwist() functions to create the data structure
IplColorTwist . This data structure contains the color-twist matrix and

allows you to store the data internally in a form that is efficient for
computation.



Color Space Conversion

CreateColorTwist

Creates a color-twist
matrix data structure.

IplColorTwist* iplCreateColorTwist(int data [16],
int  scalingValue );

data An array containing the sixteen values that
constitute the color-twist matrix. The values
are in row-wise order. Color-twist values
that are in the rangel to 1 should be
scaled up to be in the rang@™ to 2°- 1.
(Simply multiply the floating point number
in the- 1 to 1 range by 2.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2' was used to multiply the values,
the scalingvalue is 31. This value is used for
normalization.

Discussion

The functioniplCreateColorTwist() allocates memory for the data
structureplColorTwist and creates the color-twist matrix that can
subsequently be used by the functipinpplyColorTwist()

Return Value

A pointer to thelplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist()

9-19



Intel® Image Processing Library Reference Manual

SetColorTwist

Sets a color-twist matrix
data structure.

void iplSetColorTwist(lplColorTwist* cTwist , int  data [16],
int  scalingValue );

data An array containing the sixteen values that
constitute the color-twist matrix. The values
are in row-wise order. Color-twist values
that are in the rangel to 1 should be
scaled up to be in the rang@™ to 2.
(Simply multiply the floating point number
in the- 1 to 1 range by 2.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2 was used to multiply the values,
the scalingvalue is 31. This value is used for
normalization.

Discussion

The functioniplSetColorTwist() is used to set the vaules of the color-
twist matrix in the data structurglColorTwist that can subsequently be
used by the functiofplApplyColorTwist()

Return Value

A pointer to thelplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist()

9-20



Color Space Conversion

ApplyColorTwist

Applies a color-twist
matrix to an image.

void iplApplyColorTwist(Iplimage* srclmage

Iplimage* dstimage , IplColorTwist* cTwist , int  offset ),

srclmage The source image.

dstimage The resultant image.

cTwist The color-twist matrix data structure that was
prepared by a call to the function
ipISetColorTwist()

offset An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

Discussion

The functioniplApplyColorTwist() applies the color-twist matrix to

each of the first three color channels in the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
PhotoYCC to normalized,hotoRGB (both with an opacity channel) when
the channels are in the order YCC and RGB, respectively:

231 0 2 31 O
31 X O

31

2 Y

2 2% 0 o0

0o 0o o0 2%

where X =- 416611827 (that is,0.1942™ ) and
Y = - 1093069176 (that is; 0.5092*").

Color-twist matrices may also be used to perform many other color
conversions as well as the following operations:

9-21



Intel® Image Processing Library Reference Manual

¢ Lightening an image

¢ Color saturation

e Color balance

* R, G, and B color adjustments
¢ Contrast adjustment.

DeleteColorTwist

Frees memory used for a
color-twist matrix.

void iplDeleteColorTwist(IplColorTwist* cTwist );

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplCreateColorTwist()

Discussion

The functioniplDeleteColorTwist() frees memory used for the color-
twist matrix structure referred to bhyrwist .

9-22



Color Space Conversion

ColorTwistFP

Applies a color-twist
matrix to an image with
floating-point pixel values.

IPLStatus iplColorTwistFP (const Iplimage* src , Iplimage*
dst , float* cTwist )

src The source image.

dst The resultant image.

cTwist The array containing color-twist matrix elements.
Discussion

The functioniplColorTwistFP() applies the color-twist matrix stored in

the arraycTwist to each of the first three color channels.
Mathematically, the function performs the following operation:

R =t R+t G+t,B+t,
G =t R+t -G+t B+t,
B =t R+t,G+t,B+t,

Here R , G , B ) are the output values of the first three channels, and
(R, G B) are the input values of these channels. The arrayst should
contain the color-twise matrix elements in this order:

t, ty, T, to Tt b, to b, 6, 0t

00 "01 "02 “03 "10 "11 “12 13 20 21 t22 "23

Both src anddst images must contain 32-bit floating-point pixel data.
Tiling and rectangular ROIs are supported; masking and COls are not.

The function returngL_StsOk 0n SUccess, or an error status code on
failure (if the application passes invalid arguments or if there is insufficient
memory to perform the operation).

9-23



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Histogram, Threshold, and Compars

Functions

Table 10-1

This chapter describes functions that operate on an image on a pixel-by-
pixel basis: compare, threshold, and histogram functions. Table 10-1 lists
all functions in these groups.

Histogram, Threshold, and Compare Functions

Group

Function Name

Description

Thresholding

Lookup Table
and Histogram

Comparing
Images

ipIThreshold

iplContrastStretch

iplComputeHisto

iplHistoEqualize

iplGreater
iplLess
iplEqual

iplGreaterS
iplGreaterSFP
iplLessS
iplLessSFP
iplEqualS
iplEqualSFP

Performs a simple thresholding of
an image.

Stretches the contrast of an image
using intensity transformation.

Computes the intensity histogram
of an image.

Enhances an image by flattening
its intensity histogram.

Compares the pixels of two input
images and writes the results
(0 or 1) to the corresponding pixels
of the 1-bit output image.
Compares the input image’s pixels
with a constant and writes the
results (0 or 1) to the
corresponding pixels in the 1-bit
output image.

continued [

10-1



Intel® Image Processing Library Reference Manual

Table 10-1 Compare, Threshold, and Histogram Functions (continued)

Group Function Name Description

Comparing iplEqualFPEps Performs an equality test with
Images tolerance ¢ for two input images
(continued) containing 32-bit floating-point pixel

data and writes the results (0 or 1)
to each pixel of the output image.

iplEqualSFPEps Performs an equality test with
tolerance ¢ for the input image and
a constant, and writes the results
(0 or 1) to the corresponding pixels
of the output image.

Thresholding

The threshold operation changes pixel values depending on whether they
are less or greater than the specifie@shold . If an input pixel value is

less than thehreshold , the corresponding output pixel is set to the
minimum presentable value. Otherwise, it is set to the maximum
presentable value.

Threshold

Performs a simple
thresholding of an
image.

void iplThreshold(Iplimage* srclmage , Iplimage* dstimage
int  threshold );

srclmage The source image.

dstimage The resultant image.

10-2



Histogram, Threshold, and Compare Functions

threshold The threshold value to use for each pixel. The
pixel value in the output is set to the maximum
presentable value if it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

Discussion

The functioniplThreshold() thresholds the source imageimage

using the valuehreshold  to create the resultant imaget/mage . The

pixel value in the output is set to the maximum presentable value (for
example, 255 for an 8-bit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable value
(for example, O for an 8-bit-per-channel image). This is done for each
channel in the input image.

To convert an image to bitonal, you can us&hreshold() function as
shown in Example 10-1.

10-3



Intel® Image Processing Library Reference Manual

Example 10-1 Conversion to a Bitonal Image

int example101( void ) {
Iplimage *imga, *imgb;
const int width = 4, height = 4;

_try {
imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);
if( NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_1U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if( NULL == imgb ) return O;

/I Create with filling

iplAllocatelmage( imga, 1, 3 );

if( NULL == imga->imageData ) return O;
/I Make a spike
((char*)imga->imageData)[7] = (char)7;
iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I This is important. 4 bits occupy 4 bytes
/I in the imgb image because of IPL_ALIGN_DWORD
ipIThreshold( imga, imgb, 7 );

/I Check if an error occurred
if( iplGetErrStatus() != IPL_StsOk ) return O;

}

_ finally {
iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );
iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );

}
return IPL_StsOk == iplGetErrStatus();

10-4



Histogram, Threshold, and Compare Functions

Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually a LUT is
provided for each channel in the image, although sometimes the same LUT
can be shared by many channels.

The IpILUT Structure

You can set a lookup table using th@.UT structure. The C language
definition of thelpILUT structure is as follows:

IpILUT Structure Definition

typedef struct _IplLUT {

int num; /* number of keys or values */
int* key;
int* value ;
int* factor
int interpolateType
} IplLUT;

The key array has the lengthuni the value andfactor are arrays of the
same lengtum1 . Theinterpolate Type can be either
IPL_LUT_LOOKUPOr IPL_LUT_INTER .

Consider the following example of/m = 4:

key value factor
ko vO fo
k1 vl fl

k2 v2 f2

k3

10-5



Intel® Image Processing Library Reference Manual

10-6

If interpolate Type is LOOKUPthen any input intensitp in the range
ko < D < ki will result in the value/0, in the rangex1 < D < k2 will
result in the value1 and so on. linterpolate Type is INTER, then an
intensityDin the rangek0 < D < k1 will resultin the linearly
interpolated value

VO + [(v1 — vO)/(kl — kO)] * (D — kO)

The valugv1-v0)/(k1-k0) is pre-computed and storedfasin the array
factor inthelplLUT data structure, the valye2-v1)/(k2-k1) is

stored as1 and so on. Thus, the actual formula used by library functions
to compute the interpolated valuemfor example in the range

k2 < D < k3 is as follows:

D =v2 +f2* (D - k2)

Note that to calculate the interpolated valuedah this last interval,
library functions do not need the valug, which is used only by the
application to pre-compute the facter .

The data structure described above can be used to specify a piece-wise
linear transformation that is ideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensities in the
image are distributed. The same data strucfure&T is used for a
histogram except thatterpolate Type is alwaysiPL_LUT_LOOKUPand
factor is aNULL pointer for a histogram. However, unlike the LUT, the
value array represents counts of pixels falling in the specified ranges in
thekey array.

The sections that follow describe the functions that use the above data
structure.



Histogram, Threshold, and Compare Functions

ConstrastStretch
Stretches the contrast of
an image using an
intensity transformation.

void iplContrastStretch(Iplimage* srclmage
Iplimage* dstimage , IplLUT** lut );

srclmage The source image.
dstimage The resultant image.
lut An array of pointers to LUTs, one pointer for

each channel. Each lookup table should have the
key, value andfactor arrays fully initialized

(see ThelplLUT _Structuré). One or more
channels may share the same LUT. Specifies an
intensity transformation.

Discussion

The functioniplContrastStretch() stretches the contrast in a color
source imagercimage by applying intensity transformations specified by
LUTs in/ut to produce an output imagetimage . Fully specified LUTs
should be provided to this function.

Example 10-2 Using the Function iplContrastStretch() to Enhance an Image

void fullRange() {

const int width = 32, height = 32, range = 256;
IpILUT lu t = { range+1, NULL,NULL,NULL, IPL_LUT_INTER };
IpILUT* plut = &lut;

int i, mn, mx;

/Il make a full range image

Iplimage* img = iplCreatelmageJaehne( IPL_DEPTH_8U, width,
height );

Continued O

10-7



Intel® Image Processing Library Reference Manual

Example 10-2 Using the Function iplContrastStretch() to Enhance an Image
(continued)

/Il allocate LUT's arrays

lut.key = malloc( sizeof(int)*(range+1) );
lut.value malloc( sizeof(int)*range );
lut.factor = malloc( sizeof(int)*range );

/Il make the image with a narrow and shifted range
ipIRShiftS( img, img, 4 );
iplAddS( img, img, 4 );

/Il compute histogram and find min and max values
for( i=0; i<=range; i++) lut.key[i] = i;
iplComputeHisto( img, &plut );

mn = 0; while( !lut.value[mn] ) mn++;

mx = 255; while( !lut.value[mx] ) mx--;

/Il prepare LUT for stretching

lut.interpolateType = IPL_LUT_INTER; /// interpolation
mode, not lookup

lutnum = 2; /// num of key values

lut.key[0] = O; //l lower value

lut.key[1] = 255; /// upper value

lut.factor[0] = 255 / (mx - mn); /// factor to extend
range

lut.value[0] = -lut.factor[0] * mn; /// value to shift

/Il The operation is: x(i) = x(i) * factor + value
iplContrastStretch( img, img, &plut );

/Il compute histogram and find min and max values again
lut.num = 257;

lut.key[1l] = 1;

iplComputeHisto( img, &plut );

mn = 0; while( !lut.value[mn] ) mn++;

mx = 255; while( !lut.value[mx] ) mx--;

free( lut.factor);

free( lut.value );

free( lut.key );

iplDeallocate( img, IPL_IMAGE_ALL );

10-8



Histogram, Threshold, and Compare Functions

ComputeHisto

Computes the intensity
histogram of an image.

void iplComputeHisto(Iplimage* srclmage , IplLUT** lut );

srclmage The source image for which the histogram will be
computed.

lut An array of pointers to LUTs, one pointer for

each channel. Each lookup table should have the
key array fully initialized. Thevalue array will

be filled by this function. (For théey andvalue
arrays, seeThelplLUT Structuré above.) The
same LUT can be shared by one or more
channels.

Discussion

The functioniplComputeHisto() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
array/ut containing all the LUTs. Théey array in each LUT should be
initialized before calling this function. Thea/ue array containing the
histogram information will be filled in by this function. (For titey and
value arrays, seeThelplLUT Structuré above.)

10-9



Intel® Image Processing Library Reference Manual

HistoEqualize

Enhances an image by
flattening its intensity
histogram.

void iplHistoEqualize(lplimage* srclmage ,
IPLImage* dstimage , IplLUT** lut );

srclmage The source image for which the histogram will be
computed.

dstimage The resultant image after equalizing.

lut The histogram of the image is represented as an

array of pointers to LUTS, one pointer for each
channel. Each lookup table should have the
andvalue arrays fully initialized. (For theey
andvalue arrays, seeThelplLUT Structuré
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call oplHistoEqualize() is
destructive with respect to the LUTSs.

Discussion

The functioniplHistoEqualize() enhances the source image/mage
by flattening its histogram represented/by and places the enhanced
image in the output imagestimage . After executionjut  points to the
flattened histogram of the output image; see Example 10-2.

10-10



Histogram, Threshold, and Compare Functions

Example 10-3 Computing and Equalizing the Image Histogram

int example102( void ) {
Iplimage *imga;
const int width = 4, height = 4, range = 256;
IpILUT lu t = { range+1, NULL,NULL,NULL, IPL_LUT_LOOKUP };
IpILUT* plut = &lut;

_try {

int i;

lut.key = malloc( sizeof(int)*(range+1) );

lut.value = malloc( sizeof(int)*range );

imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

iflt NULL == imga ) return O;

/I Create with filling

iplAllocatelmage( imga, 1, 3 );

if( NULL == imga->imageData ) return O;

/I Make the two level data

for( i=0; i<8; i++) ((char*)imga->imageData)[i] = (char)7;
/I Initialize the histogram levels

for( i=0; i<=range; i++) lut.key[i] = i;

/I Compute histogram

iplComputeHisto( imga, &plut );

/I Equalize histogram = rescale range of image data
iplHistoEqualize( imga, imga, &plut );

/I Check if an error occurred
if( iplGetErrStatus() != IPL_StsOk ) return O;

}

_ finally {
iplDeallocate( imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA );
if( lutkey ) free( lutkey );
if( lut.value ) free( lut.value );

}
return IPL_StsOk == iplGetErrStatus();

10-11



Intel® Image Processing Library Reference Manual

10-12

Comparing Images

This section describes the functions that allow you to compare images.
Each compare function writes its results to a 1-bit output image. The output
pixel is set to 1 if the corresponding input pixel(s) satisfied the compare
condition; otherwise, the output pixel is set to 0. Often, you might wish to
use the compare functions to generate a 1-bit mask image for future use in
other image-processing operations.

Functions whose names have a cagitéfor examplejpiGreaters )
compare the pixels & single input imagand a scalar variable. Functions
whose names don’t have ar(such aspiGreater ) compare the
corresponding pixels itwo input imagesThe two input images must have
the same bit depth, origin, and channel of interest (COI) setting.

When the input pixels have more than one channel and the COI is not set,
the result will be 1 only for those pixels in whigdach channesatisfies the
compare condition.

For example, in case @fiGreater  (two input images) one RGB pixel is
“greater” than another only if all three channel values of the first pixel are
greater than those of the second. Thus, if at least one of the channel values
in an input pixel is less than or equal to that channel’s value in the other
image, thenpiGreater  will set the corresponding output pixel to 0.

Functions that use a single input image work similarly. If you don’t set the
COl, the function compares all channel values to the input scalar value.
Again, the result will be 1 only for those pixels in which each channel
satisfies the required condition. For example, an RGB pixel is considered
to be “equal” to the input scalar value only if all three RGB channels are
equal to that value. If at least one of the channel values is greater or less
than the scalar value, the functi@iequals  will set the corresponding
output pixel to 0.



Histogram, Threshold, and Compare Functions

Greater

Tests if the pixel values of the
firstimage are greater than
those of the second image.

IPLStatus iplGreater (Ipllmage* imgl, Iplimage* img2
Iplimage*  dst);

imgl1, img2 The source images.
dst The resultant 1-bit image.
Discussion

The functionipiGreater() compares the corresponding pixels of two
input images for “greater than” and writes the results to a 1-bit image
If a pixel's value inimg1 is greater than that pixel’s value img2, then the
corresponding pixel imist is set to 1; otherwise the pixel st is set to 0.

The imagesmgl andimg2 must have the same bit depth, origin, and COI
settings. If the COl is not set, amg1 pixel is considered to be “greater”
than animg2 pixel only if each channel in theng1 pixel is greater than

that channel in théng2 pixel. If the COl is set, the function compares only
the COl values.

The function returng”L_StsOK if the compare operation is successful.
If you pass incompatibléngz andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

10-13



Intel® Image Processing Library Reference Manual

10-14

Less

Tests if the pixel values of the
first image are less than those of
the second image.

IPLStatus iplLess (Iplimage* img1, Iplilmage* img2
Iplimage*  dst);

imgl1, img2 The source images.
dst The resultant 1-bit image.
Discussion

The functioniplLess()  compares the corresponding pixels of two input
images for “less than” and writes the results to a 1-bit image If a

pixel's value inimg1 is less than that pixel's value img2, then the
corresponding pixel imist is set to 1; otherwise the pixel st is set to 0.

The imagesmgl andimg2 must have the same bit depth, origin, and COI
settings. If the COl is not set, amg1 pixel is considered to be “less” than
animg2 pixel only if each channel in thng1 pixel is less than that
channel in themg2 pixel. If the COl is set, the function compares only the
COl values.

The function returng”L_StsOK if the compare operation is successful.
If you pass incompatibléngz andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.



Histogram, Threshold, and Compare Functions

Equal

Tests if the pixel values of the
firstimage are equal to those of
the second image.

IPLStatus iplEqual (Ipllmage* imgl, Iplimage* img2
Iplimage*  dst);

imgl1, img2 The source images.
dst The resultant 1-bit image.
Discussion

The functioniplEqual()  compares the corresponding pixels of two input
images for equality and writes the results to a 1-bit image If a pixel's
value inimg1 is equal to that pixel’s value imng2, then the corresponding
pixel in dst is set to 1; otherwise the pixel irst is set to 0.

The imagesmgl andimg2 must have the same bit depth, origin, and COI
settings. If the COl is not set, amg1 pixel is considered to be equal to an
img2 pixel only if each channel in thieéig1 pixel is equal to that channel in
theimg2 pixel. If the COl is set, the function compares only the COI
values.

The function returng”L_StsOK if the compare operation is successful.
If you pass incompatibléngz andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

10-15



Intel® Image Processing Library Reference Manual

10-16

EqualFPEps

Tests if the floating-point pixel
values in two images are equal
within a tolerancee.

IPLStatus iplEqualFPEps (Iplimage* img1, Ipllmage* img2 ,
Iplimage*  dst, float eps);

imgl1, img2 The source images.

dst The resultant 1-bit image.
eps The tolerance value.
Discussion

The functioniplEqualFPEps() tests if the corresponding pixels of two
input images are equal within the tolerange, and writes the results to a
1-bit imagedst . If the absolute value of difference of the pixel values in
img1 andimg2 is less thareps, then the corresponding pixel i3t is set
to 1; otherwise the pixel im'st is setto 0.

Bothimg1z andimg2 must contain 32-bit floating-point pixel data. They
must have the same origin and COI settings. If the COl is not set, pixels in
img1 andimg2 are considered to be “equal” only if each channel in the
img1 pixel is equal, within the tolerancss, to that channel in theng2

pixel. If the COl is set, the function compares only the COI values.

The function returng”L_StsOK if the compare operation is successful.
If you pass incompatibléngz andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.



Histogram, Threshold, and Compare Functions

GreaterS

Tests if the image’s pixel values
are greater than an integer

scalar value.
IPLStatus iplGreaterS (Iplimage* src, int s,
Iplimage*  dst);
src The source image.
s The integer scalar value to be compared with
pixel values.
dst The resultant 1-bit image.
Discussion

The functioniplGreaterS() compares the pixels of the input image
and a scalar value for “greater than” and writes the results to a 1-bit
imagedst . If a pixel's value is greater thas then the corresponding pixel
in dst is set to 1; otherwise the pixel irst is set to O.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functiggreaterSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be “greater” thanonly if each channel in the pixel is greater
thans. If the COl is set, the function comparesnd the pixel values in the
COl.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

10-17



Intel® Image Processing Library Reference Manual

10-18

GreaterSFP

Tests if the image’s pixel values
are greater than a floating-point

scalar value.
IPLStatus iplGreaterSFP (Iplimage* src , float S,
Iplimage*  dst);
src The source image.
s The 32-bit floating-point scalar value to be
compared with pixel values.
dst The resultant 1-bit image.
Discussion

The functionipiGreaterSFP() compares the pixels of the input image
src and a scalar valug for “greater than” and writes the results to a 1-bit
imagedst . If an input pixel's value is greater than then the
corresponding pixel imist is set to 1; otherwise the pixel st is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the functigGreaterS()

described on the previous page.) If the source image COl is not set, a pixel
is considered to be “greater” tharonly if each channel in the pixel is

greater thars. If the COl is set, the function comparesnd the pixel

values in the COI.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.



Histogram, Threshold, and Compare Functions

LessS

Tests if the image’s pixel values
are less than an integer scalar

value.

IPLStatus iplLessS (Iplimage* src, int s,
Iplimage*  dst);

src The source image.

s The integer scalar value to be compared with
pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplLessS()  compares the pixels of the input imagre and
a scalar value for “less than” and writes the results to a 1-bit image .

If a pixel's value is less thag, then the corresponding pixel i3t is set to
1; otherwise the pixel imst is set to 0.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functighessSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be “less” thanonly if each channel in the pixel is less than

s. Ifthe COl is set, the function comparesnd the pixel values in the

COl.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

10-19



Intel® Image Processing Library Reference Manual

10-20

LessSFP

Tests if the image’s pixel values
are less than a floating-point

scalar value.
IPLStatus iplLessSFP (Iplimage* src , float s,
Iplimage*  dst);
src The source image.
s The 32-bit floating-point scalar value to be
compared with pixel values.
dst The resultant 1-bit image.
Discussion

The functioniplLessSFP()  compares the pixels of the input imagre

and a scalar valuefor “less than” and writes the results to a 1-bit image
dst . If an input pixel's value is less, then the corresponding pixel izt

is set to 1; otherwise the pixel st is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the funcii@rssS()

described on the previous page.) If the source image COl is not set, a pixel
is considered to be “less” thanonly if each channel in the pixel is less
thans. If the COl is set, the function comparesnd the pixel values in the
COl.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.



Histogram, Threshold, and Compare Functions

EqualS

Tests if the image’s pixel values
are equal to an integer scalar
value.

IPLStatus iplEqualS (Iplimage* src, int s,
Iplimage*  dst);

src The source image.

s The integer scalar value to be compared with
pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplEqualS()  compares the pixels of the input image and
an integer scalar valuefor equality and writes the results to a 1-bit image
dst . If a pixel's value is equal te, then the corresponding pixel it is

set to 1; otherwise the pixel it is set to O.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functigBqualSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be equal toonly if each channel in the pixel is equal olf

the COl is set, the function comparesind the pixel values in the COI.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

10-21



Intel® Image Processing Library Reference Manual

10-22

EqualSFP

Tests if the image’s pixel values
are equal to a floating-point

scalar value.
IPLStatus iplEqualSFP (Iplimage* src , float S,
Iplimage*  dst);
src The source image.
s The 32-bit floating-point scalar value to be
compared with pixel values.
dst The resultant 1-bit image.
Discussion

The functioniplEqualSFP()  compares the pixels of the input imagre
and a scalar value for equality and writes the results to a 1-bit image .
If an input pixel's value is equal te, then the corresponding pixel izt
is set to 1; otherwise the pixel st is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the funciiyuals()

described on the previous page.) If the source image COl is not set, a pixel
is considered to be “equal” toonly if each channel in the pixel is equal to

s. Ifthe COl is set, the function comparesnd the pixel values in the

COl.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.



Histogram, Threshold, and Compare Functions

EqualSFPEps

Tests if the pixel values are
equal to a floating-point scalar
value within a tolerance.

IPLStatus iplEqualSFPEps (Iplimage* src , float s,
Iplimage*  dst, float eps);

src The source image.

s The 32-bit floating-point scalar value to be
compared with pixel values.

dst The resultant 1-bit image.

eps The tolerance.

Discussion

The functioniplEqualSFPEps()  tests if pixels of the input imagec are
equal to a scalar valuewithin the tolerancesps, and writes the results to
a 1-bit imagedst . If the absolute value of difference of the input pixel
value ands is less thareps, then the corresponding pixel it is setto 1;
otherwise the pixel inist is set to 0.

The function supports only images with 32-bit floating-point pixel data.
If the source image COl is not set, a pixel is considered to be “equal” to
only if each channel in the pixel is equal4avithin the given tolerance. If
the COl is set, the function comparesnd the pixel values in the COI.

The function returng”L_StsOK if the compare operation is successful.

If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

10-23



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Geometric Transforms

Table 11-1

This chapter describes the functions that perform geometric transforms
to resize the image, change the image orientation, or warp the image. There

is also a special functiofplRemap()

, for performing geometric

transforms with a user-defined coordinate mapping.

Table 11-1 lists image geometric transform functions and macro

definitions.

Image Geometric Transform Functions and Macros

Group Function Name Description
Resizing iplZoom Zooms or expands an image.
iplDecimate Decimates (shrinks) an image.
iplDecimateBlur Blurs an image, then decimates the
blurred image.
ipIResize Resizes an image.
iplZoompFit Change image size using image’s
ipIDecimateFit dimensions to set scaling factors
ipIResizeFit (macro definitions).
Changing ipIMirror Mirrors an image.
Orientation  jp|Rotate Rotates an image.
iplGetRotateShift Computes the shift for ipIRotate() ,
given the rotation center and angle.
iplRotateCenter Rotates an image around an arbitrary
center (macro definition).
Warping iplShear Shears an image.
iplWarpAffine Performs affine transforms with the

specified coefficients.

Continued [

11-1



Intel® Image Processing Library Reference Manual

11-2

Table 11-1 Image Geometric Transform Functions  (continued)
Group Function Name Description
Warping  iplWarpBilinear Performs a bilinear
(cont.) transform with the specified
coefficients.
iplWarpBilinearQ Performs a bilinear
transform with the specified
reference quadrangle.
iplWarpPerspective Performs a perspective
transform with the specified
coefficients.
iplwarpPerspectiveQ Performs a perspective
transform with the specified
reference quadrangle.
Warping  iplGetAffineBound Compute the bounding
support iplGetBilinearBound rectangle for the rectangular
iplGetPerspectiveBound ROI transformed by the
warping functions.
iplGetAffineQuad Compute coordinates of the
iplGetBilinearQuad guadrangle to which the ROI
iplGetPerspectiveQuad is mapped by the warping
functions.
iplGetAffineTransform Compute the coefficients of
iplGetBilinearTransform transforms performed by the
iplGetPerspectiveTransform warping functions.
Arbitrary  iplRemap Re-maps the image using a
mapping doordinate look-up table.




Geometric Transforms

Internally, all geometric transformation functions handle regions of interest
(ROIs) with the following sequence of operations:

« transform the rectangular ROI of the source image to a quadrangle in
the destination image

« find the intersection of this quadrangle and the rectangular ROI of the
destination image

« update the destination image in the intersection area, taking into
account mask images (if any).

The source and destination images must be different; that is, in-place
operations are not supported. The coordinates in the source and destination
images must have the same origin.

Most of the geometric transformation functions haventerpolatethe

pixel values of the source image in order to compute the pixel values of the
destination image. The Image Processing Library supports several
interpolation algorithms. For more information on the algorithms supported
in the library, seé\ppendix B

Changing the Image Size

This section describes the functions that scale the input image i tire
y-directions, without changing the image orientation.

These functions perform image resampling by using various kinds of
interpolation algorithms: nearest neighbor, linear interpolation, cubic
interpolation, and super-sampling.

11-3



Intel® Image Processing Library Reference Manual

Zoom

Zooms or expands an
image.

void iplZoom(Iplimage* srclmage , Iplimage* dstimage , int
xDst, int  xSrc, int yDst, int ySrc, int interpolate );

srclmage The source image.
dstimage The resultant image.
xDst,xSrc,yDst,ySrc Positive integers specifying the fractions

xDst/xSrc =1 andyDst/ySrc =1 - the factors
by which thex andy dimensions of the image’s
ROI are changed. For example, setting

xDst =2,xSrc =1,yDst =2,ySrc =1
doubles the image size in each dimension to
increase the image area by a factor of four.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:
IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

Discussion

The functioniplzoom()  zooms or expands the source imagemage

by xDst/xSrc in thex direction and/Dst/ySrc  in they direction. The
interpolation specified byterpolate is used for resampling the input
image.

11-4



Geometric Transforms

Decimate

Decimates or shrinks an
image.

void iplDecimate(lplimage* srclmage , Iplimage* dstimage
int xDst, int xSrc, int yDst, int ySrc, int interpolate );

srclmage The source image.
dstimage The resultant image.
xDst,xSrc,yDst,ySrc Positive integers specifying the fractions

xDst/xSrc <1 andyDst/ySrc < 1- the factors
by which thex andy dimensions of the image’s
ROI are changed. For example, setting

xDst =1,xSrc =2,yDst =1,ySrc =2
decreases the image size in each dimension by
half.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.
IPL_INTER_SUPER  Super-sampling.

Discussion

The functioniplDecimate() decimates or shrinks the source image
srclmage by xDst/xSrc  in thex direction and/Dst/ySrc  in they
direction. The interpolation specified yerpolate is used for
resampling the input image.

11-5



Intel® Image Processing Library Reference Manual

11-6

DecimateBlur

Blurs and decimates an

void iplDecimateBlur (Ipllmage* srclmage
Iplimage* dstimage , int  xDst, int  xSrc, int yDst, int
ySrc , int interpolate , int  xMaskSize , int  yMaskSize );
srclmage The source image.
dstimage The resultant image.
xDst,xSrc,yDst,ySrc Positive integers specifying the fractions

xDst/xSrc - < 1 andyDst/ySrc < 1 - the factors
by which thex andy dimensions of the image’s
ROI are changed (similar ipiDecimate ).

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

xMaskSize,yMaskSize ~ Thex andy size of the blur mask.

Discussion

The functioniplDecimateBlur() blurs the input image using an
xMaskSize by yMaskSize mask, then decimates the blurred image by a
factor ofxDst/xSrc  in thex direction and/Dst/ySrc  in they direction.

If mask rows and columns contain odd numbers of pixels, the mask anchor
is exactly at the center of the mask. Otherwise, the functonds upthe
center coordinates. Thus, in #&38mask with top left corner at (0,0), the
anchor is at (1,2). In a8 mask, the anchor would be at (1,2).

The interpolation specified byiterpolate is used for resampling the
input image.



Geometric Transforms

Resize

Resizes an image.

void iplResize(Iplimage* srclmage , Iplimage* dstimage , int
xDst, int  xSrc, int yDst, int ySrc, int interpolate );

srclmage The source image.
dstimage The resultant image.
xDst,xSrc,yDst,ySrc Positive integers specifying the fractions

xDst/xSrc - andyDst/ySrc - the factors by
which thex andy dimensions of the image’s ROI
are changed. For example, setting

xDst =1,xSrc =2,yDst =2,ySrc =1

halves thexand doubles thg dimension.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

IPL_INTER_SUPER  Super-sampling (can be
used only forxDst < xSrc , yDst < ySrc).

Discussion

The functioniplResize() resizes the source image/mage by

xDst/xSrc in thex direction and/Dst/ySrc  in they direction.

The function differs fromplzoom andiplDecimate in that it can

increase one dimension of an image while decreasing the other dimension.

The interpolation specified biyterpolate is used for resampling the
input image.

11-7



1 1 Intel® Image Processing Library Reference Manual

11-8

iplZoomFit
iplDecimateFit
iplResizeFit

Macro definitions that change
the image size using the images’
dimensions as scaling factors.

iplZoomFit( ~ SRC, DST, INTER );

iplDecimateFit( SRC, DST, INTER ),
ipIResizeFit( SRC, DST, INTER );
SRC The source image.
DST The destination image.
INTER The type of interpolation to perform for

resampling the source image.

Discussion

Use macro definitionslzoomFit(), iplDecimateFit(),

ipIResizeFit() to resize a source image ROI so that its dimensions fit
into the destination ROI (or the whole image) size. These macros use
dimensions of source and destination images’ ROIs (or the sizes of whole
images) to determine the respective scaling factoxs amdy- directions.

Note thatSrC and DSTpointers toplimage — structures are used but not
checked in the macros. Thus, it is essential that your application checks
that these pointers specify valid source and destination images.



Geometric Transforms

Example 11-1 Using Macro Definition to Resize an Image

int ResizeFit( void ) {

Iplimage *imga = iplCreatelmageJaehne(
IPL_DEPTH_8U, 5, 5 );

Iplimage *imgb = iplCreatelmageJaehne(
IPL_DEPTH_8U, 7, 7 );

IPLStatus st;

iplResizeFit( imga, imgb, IPL_INTER_NN );
st = iplGetErrStatus();

iplDeallocate( imga, IPL_IMAGE_ALL );
iplDeallocate( imgb, IPL_IMAGE_ALL );

return IPL_StsOk == st;

Changing the Image Orientation

The functions described in this section change the image orientation by
rotating or mirroring the source image. Rotation involves image resampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
interpolation (seé\ppendix B. Mirroring is performed by flipping the

image axis in horizontal or vertical direction.

Rotate

Rotates an image
around the (0,0) origin.

void iplRotate(Iplimage* srclmage , Iplimage* dstimage
double angle , double xShift , double yShift,
int  interpolate );

srclmage The source image.

11-9



Intel® Image Processing Library Reference Manual

11-10

dstimage The resultant image.

angle The angle (in degrees) to rotate the image.
The image is rotated around the corner with
coordinates (0,0).

xShift , yShift The shifts along th&- andy-axes to be
performed after the rotation.

interpolate The type of interpolation to perform for
resampling the source image. The following
modes are supported:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functioniplRotate() rotates the source imagec/mage by angle
degrees around the origin (0,0) and shifts itdsyit  andyshit  along
thex- andy-axis, respectively. The interpolation specified by
interpolate is used for resampling the input image.

If you need to rotate the image around an arbitrary centesrer ,
yCenter ) rather than the origin (0,0), you can compuiift  and

yShift  using the functionplGetRotateShift and then call
ipIRotate() . Alternatively, you can use th&lRotateCenter macro
definition.



Geometric Transforms

GetRotateShift

Computes shifts for iplRotate, given
the rotation center and angle.

void iplGetRotateShift(double xCenter , double yCenter ,
double angle , double*  xShift , double*  yShift );

xCenter , yCenter Coordinates of the rotation center for which you
wish to compute the shifts.

angle The angle (in degrees) to rotate the image around
the point with coordinatescCenter , yCenter ).

xShift , yShift Output parameters: the shifts along thandy-
axes to be passed ioRotate() in order to

achieve rotation around the specified center
(xCenter , yCenter ) by the specifiechngle .

Discussion

Use the functionplGetRotateShift() if you wish to rotate an image
around an arbitrary centexdenter , yCenter ) rather than the origin (0,0).
Just pass the rotation centecénter , yCenter ) and the angle of rotation
to iplGetRotateShift() , and the function will recompute the shifts
xShift , yShift

Calling ipIRotate() with thesexshift andyshift is equivalent to
rotating the image around the centecénter , yCenter ).

Example 11-2 Rotating an Image

int example111( void ) {
Iplimage *imga, *imgb;
const int width = 5, height = 5;
_try {

int i;

continued [J

11-11



Intel® Image Processing Library Reference Manual

Example 11-2 Rotating an Image (continued)

double xshift=0, yshift=0;

imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

iflt NULL == imga ) return O;

imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(t NULL == imgb ) return O;

/I Create with filling

iplAllocatelmage( imga, 1, 0 );

if( NULL == imga->imageData ) return O;

/I Make horizontal line

for( i=0; i<width; i++)
(imga->imageData + 2*imga->widthStep)[i] =
(uchar)7;

iplAllocatelmage( imgb, 0, 0 );

if( NULL == imgb->imageData ) return O;

/I Rotate by 45 degrees around point(2,2)

iplGetRotateShift(2.0,2.0,45.0, &xshift, &yshift);

iplRotate( imga, imgb, 45.0, xshift, yshift,

IPL_INTER_LINEAR );
/I Check if an error occurred
if( iplGetErrStatus() != IPL_StsOk ) return O;
}
_ finally {
iplDeallocate(imga, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);
iplDeallocate(imgb, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();

11-12



Geometre Transforms

ipIRotateCenter

This function-like maao allows to
rotate an image around the given
center.

iplRotateCenter( srclmage, dstimage, angle, xCenter
yCenter , interpolate );

srclmage The source image.
dstimage The destinatio image.
angle The angk (in degreekto rotak the image

arourd the point with coordinates
(xCenter , yCenter ).

xCenter , yCenter Coordinates of the center of rotation.
interpolate The type of interpolatian to perfom for
resamplig the input image The following
modes are supported:
IPL_INTER_NN Nearesneighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGE Smooh edges of an image.
Can be added to
interpolation by using
bitwise logicd OR.

Discussion

Use the macio iplRotateCente  r to rotake an image arourd an arbitrary
center The rotation cente coordinats (xCenter , yCenter ) are passed
as argumentsard the call to the auxiliary function that recomputsthe
shiftsis hidden.

11-13



Intel® Image Processing Library Reference Manual

Example 11-3 Using Macro Definition to Rotate an Image

int RotateCenter( void ) {

Iplimage *imga = iplCreatelmageJaehne(IPL_DEPTH_8U, 5, 5);
Ipllmage *imgb = iplClonelmage( imga );
IPLStatus st;

/I Rotate by 45 about point(2,2)
iplRotateCenter( imga, imgb, 45, 2, 2, IPL_INTER_NN );
st = iplGetErrStatus();

iplDeallocate( imga, IPL_IMAGE_ALL );
iplDeallocate( imgb, IPL_IMAGE_ALL );

return IPL_StsOk == st;

Mirror

Mirrors an image about a
horizontal or vertical axis.

void iplMirror(Iplimage* srclmage , Iplimage* dstimage ,
int  flipAxis );

srclmage The source image.

dstlmage The resultant image.

flipAxis Specifies the axis to mirror the image.

Use the following values to specify the axes:
0 for the horizontal axis, 1 for the vertical axis,
- 1 for both horizontal and vertical axes.

Discussion

The functionipiMirror() mirrors or flips the source imagec/image
about a horizontal or vertical axis or both.

11-14



Geometric Transforms

Warping

This section describes shearing and warping functions of the Image
Processing Library. These functions have been added in release 2.0.
They perform the following operations:

« affine warping (the functionsiwarpAffine andipiShear )
¢ bilinear warping iplwarpBilinear , iplWarpBilinearQ )
e perspective warpinggWarpPerspective , iplWarpPerspectiveQ ).

Affinewarping operations are more complex and more general than
resizing or rotation. A single call tplwarpAffine() can perform a
rotation, resizing, and mirroring. (This can require some matrix math on
the part of the user to calculate the transform coefficients.)

Bilinear andperspectivevarping operations can be viewed as further
generalizations of affine warping. They give you even more degrees of
freedom in transforming the image. For example, an affine transformation
always maps parallel lines to parallel lines, while bilinear and perspective
transformations might not preserve parallelism; a bilinear transformation
might even map straight lines to curves.

Unlike rotation or zooming, the warping functions do not necessarily map
the rectangular ROI of the source image to a rectangle in the destination
image. Affine warping functions map the rectangular ROl to a
parallelogram; bilinear and perspective warping functions map the ROl to a
general quadrangle.

To help you cope with the complex behavior of warping transformations,
the library includes a number of auxiliary functions that compute the
following warping parameters:

¢ coordinates of the four points to which the ROI's vertices are mapped
¢ the bounding rectangle for the transformed ROI

« the transformation coefficients.

These auxiliary functions are described immediately after the function that
performs the respective warping operation.

11-15



Intel® Image Processing Library Reference Manual

11-16

Performs a shear of
the source image.

void iplShear(Iplimage* srclmage , Iplimage* dstimage , double  xShear ,
double yShear , double xShift , double yShift , int interpolate );

srclmage The source image.

dstimage The resultant image.

xShear, yShear The shear coefficients.

xShift, yShift Additional shift values for the andy directions.
interpolate The type of interpolation to perform for

resampling. Can be one of the following:
IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functionipishear()  performs a shear of the source image according
to the following formulas:

X =X+ xShear -y + xShift
Y =Y+ yShear X+ yShift

wherex andy denote the original pixel coordinateg} andy’ denote the
pixel coordinates in the sheared image. This shear transform is a special
case of affine transform performed lpywarpAffine (see below).

The interpolation specified byiterpolate is used for resampling the
input image.



Geometric Transforms

WarpAffine
Warps an image by an affine transform.
void iplWarpAffine(Iplimage* srclmage , Iplimage* dstimage
const double coeffs [2][3], int interpolate );
srclmage The source image.
dstimage The resultant image.
coeffs The affine transform coefficients.
interpolate The type of interpolation to perform for

resampling. Can be one of the following:
IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC  Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functioniplwarpAffine() warps the source image by an affine
transformation according to the following formulas:

X =coeffs [0][0] -X+ coeffs [0][1] Y+ coeffs [0][2]

Yy =coeffs [1][0] X+ coeffs [1][1] -y + coeffs [1][2]
wherex andy denote the original pixel coordinatex: andy’ denote the
pixel coordinates in the transformed image.

The interpolation specified byiterpolate is used for resampling the
input image. To compute the affine transform parameters, use the functions

iplGetAffineBound() , iplGetAffineQuad() and
iplGetAffine Transform() . These functions are described in the sections
that follow.

11-17



Intel® Image Processing Library Reference Manual

11-18

GetAffineBound

Computes the bounding
rectangle for ROI transformed
by iplWarpAffine.

void iplGetAffineBound(Iplimage* image , const double
coeffs [2][3], double rect [2][2]);

image The image to be passeditdvarpAffine()

coeffs TheiplWarpAffine() transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpAffine() mapsimage's ROI.

Discussion

The functioniplGetAffineBound() computes the coordinates of vertices

of the smallest possible rectangle with horizontal and vertical sides that

bounds the figure to whichiwarpAffine() mapsimage 's ROI.

GetAffineQuad

Computes the quadrangle to
which the image ROl would be
mapped by iplWarpAffine.

void iplGetAffineQuad(Iplimage* image, const double
coeffs [2][3], double quad[4][2]);

image The image to be passeditdNarpAffine()

coeffs The affine transform coefficients.



Geometric Transforms

quad Output array: coordinates of the quadrangle to
which theimage 's ROl would be mapped by
iplWarpAffine()

Discussion

The functioniplGetAffineQuad() computes coordinates of the

quadrangle to which therage 's ROl would be mapped by
iplwarpAffine() with the transform coefficientsoeffs .

GetAffineTransform

Computes the iplWarpAffine
coefficients, given the ROI-
quadrangle pair.

void iplGetAffineTransform(Iplimage* image , double
coeffs [2][3], const double quad[4][2]);

image The image to be passeditdNarpAffine()

coeffs Output array: the affine transform coefficients.

quad Coordinates of the 4 points to which theage 's
ROl vertices would be mapped by
iplWarpAffine()

Discussion

The functioniplGetAffineTransform() computes the coefficients of

iplWarpAffine() transform, given the vertices of the quadrangle to

which theimage 's ROl would be mapped biglwarpAffine() with
these coefficients.

11-19



Intel® Image Processing Library Reference Manual

WarpBilinear
WarpBilinearQ

Warps an image by a
bilinear transform.

void iplWarpBilinear(lplimage*
const double

void iplWarpBilinearQ(Iplimage*
const double

srclmage
dstimage
coeffs

warpFlag

interpolate

quad

11-20

coeffs [2][4], in

quad[4][2], int

srclmage , Iplimage*
warpFlag , int

dstimage
interpolate );

srclmage , Iplimage* dstimage
warpFlag , int  interpolate ),

The source image.
The resultant image.
Array with bilinear transform coefficients.

A flag: eitheriPL_R_TO_Q (ROI to quadrangle) or
IPL_Q_TO_R (quadrangle to ROI). Sdaiscussion

The type of interpolation to perform for resampling.
Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGISmooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Array of coordinates of the reference quadrangle
vertices. IfwarpFlag isIPL_R_TO_Q, the
rectangular ROI of the source image is mapped to
the reference quadrangle WtrpFlag is
IPL_Q_TO_R, the source quadrangle is mapped to
the rectangular ROI of the destination image.



Geometric Transforms

Discussion

The functionsplwarpBilinear() andiplwarpBilinearQ() warp the
source image by a bilinear transformation according to the following
formulas:

X = CooXY * Cor X+ Cop Y + Cyq
y = CioXYy + € X+ Cpy +Cyy
wherex andy denote the original pixel coordinatex: andy’ denote the

pixel coordinates in the transformed image.

The two functions differ in their third argumengiwarpBilinear() uses
a 2-by-4 input array of transform coefficierts = coeff [mj[ n|,
whereasplWarpBilinearQ() computes the coefficients internally from

the input arrayyuad containing coordinates of the reference quadrangle.

If warpFlag isIPL_R_TO_Q, the functions transform the rectangular ROI

of the source image into the reference quadrangle of the resultant image.
If warpFlag isIPL_Q_TO_R, the functions transform the source quadrangle
into the rectangular ROI of the resultant image.

The interpolation specified byiterpolate is used for resampling the
input image.

To compute the bilinear transform parameters, use the auxiliary functions:
iplGetBilinearBound() , iplGetBilinearQuad() and
iplGetBilinearTransform() . These functions are described in the
sections that follow.

11-21



Intel® Image Processing Library Reference Manual

11-22

GetBilinearBound

Computes the bounding
rectangle for ROI transformed
by iplWarpBilinear.

void iplGetBilinearBound(Iplimage* image , const double
coeffs [2][4], double rect [2][2]);

image The image to be passeditdnarpBilinear()

coeffs The bilinear transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpBilinear() mapsimage's ROI.

Discussion

The functioniplGetBilinearBound() computes the coordinates of

vertices of the smallest possible rectangle with horizontal and vertical sides

that bounds the figure to whichiwarpBilinear() mapsimage 's ROI.

GetBilinearQuad

Computes the quadrangle to
which the image ROl would be
mapped by iplWarpBilinear.

void iplGetBilinearQuad(Iplimage* image, const double
coeffs [2][4], double quad[4][2]);

image The image to be passeditdvarpBilinear()

coeffs The bilinear transform coefficients.



Geometric Transforms

quad Output array: coordinates of the quadrangle to
which theimage 's ROl would be mapped by
iplWarpBilinear()

Discussion

The functioniplGetBilinearQuad() computes coordinates of the
quadrangle to which therage 's ROl would be mapped by
iplwarpBilinear() with the transform coefficientsoeffs .

GetBilinearTransform

Computes the iplWarpBilinear
coefficients, given the ROI-
quadrangle pair.

void iplGetBilinearTransform(Iplimage* image , double
coeffs [2][4], const double quad[4][2]);
image The image to be passeditdvarpBilinear()
coeffs Output array: the bilinear transform coefficients.
quad Coordinates of the 4 points to which theage 's

ROl vertices would be mapped by
iplWarpBilinear()

Discussion

The functioniplGetBilinearTransform() computes the
iplWarpBilinear() transform coefficients, given the vertices of the
quadrangle to which thirage 's ROl would be mapped by
iplwarpBilinear() with these coefficients.

11-23



Intel® Image Processing Library Reference Manual

WarpPerspective
WarpPerspectiveQ

Warps an image by a
perspective transform.

void iplWarpPerspective(lplimage*
const double

void iplWarpPerspectiveQ(Iplimage*
const double quad[4][2], int

srclmage
dstimage
coeffs

warpFlag

interpolate

quad

11-24

coeffs [3][3], int

srclmage , Iplimage* dstimage
warpFlag , int  interpolate );

srclmage , Iplimage* dstimage
warpFlag , int  interpolate ),

The source image.
The resultant image.
Array with perspective transform coefficients.

A flag: eitheriPL_R_TO_Q (ROI to quadrangle) or
IPL_Q_TO_R (quadrangle to ROI). Sdaiscussion

The type of interpolation to perform for resampling.
Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Array of coordinates of the reference quadrangle
vertices. IfwarpFlag isIPL_R_TO_Q, the
rectangular ROI of the source image is mapped to
the reference quadrangle WtrpFlag is
IPL_Q_TO_R, the source quadrangle is mapped to
the rectangular ROI of the destination image.



Geometric Transforms

Discussion

The functionsplwarpPerspective() andiplwarpPerspectiveQ()
warp the source image by a perspective transformation according to the
following formulas:

X = (Coo'x tTCuYt Coz)/ (Czo'x TGyt C22)
y = (Clo'x eyt C12)/ (Czo'x BT A C22)

wherex andy denote the original pixel coordinatex: andy’ denote the
pixel coordinates in the transformed image.

The two functions differ in their third argumengiwarpPerspective()

uses a 3-by-3 input array of transform coefficieqfs= coeff [mj[ n],
whereasplWarpPerspectiveQ() computes the coefficients internally
from the input arrayjuad containing coordinates of the reference
quadrangle.

If warpFlag isIPL_R_TO_Q, the functions transform the rectangular ROI

of the source image into the reference quadrangle of the resultant image.
If warpFlag isIPL_Q_TO_R, the functions transform the source quadrangle
into the rectangular ROI of the resultant image.

The interpolation specified byiterpolate is used for resampling the
input image.

To compute the perspective transform parameters, use these auxiliary

functions:iplGetPerspectiveBound() , iplGetPerspectiveQuad()
andiplGetPerspective Transform() . They are described in the sections
that follow.

11-25



Intel® Image Processing Library Reference Manual

11-26

GetPerspectiveBound

Computes the bounding
rectangle for ROI transformed
by iplWarpPerspective.

void iplGetPerspectiveBound(Iplimage* image, const double
coeffs [3][3], double rect [2][2]);

image The image to be passed to
iplWarpPerspective()

coeffs The perspective transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpPerspective() mapsimage's ROI.

Discussion

The functioniplGetPerspectiveBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical sides
that bounds the figure to whichiwarpPerspective() mapsimage 's

ROLI.

GetPerspectiveQuad

Computes the quadrangle to
which the ROl is mapped by
iplWarpPerspective.

void iplGetPerspectiveQuad(lplimage* image, const double
coeffs [3][3], double quad[4][2]);

image The image to be passed to
iplWarpPerspective()

coeffs The perspective transform coefficients.



Geometric Transforms

quad Output array: coordinates of the quadrangle to
which theimage 's ROl would be mapped by
iplWarpPerspective()

Discussion

The functioniplGetPerspectiveQuad() computes coordinates of the

quadrangle to which therage 's ROl would be mapped by

iplwarpPerspective() with the transform coefficientsoeffs .

GetPerspectiveTransform

Computes the coefficients of
iplWarpPerspective, given the
ROI-quadrangle pair.

void iplGetPerspectiveTransform(Iplimage* image , double
coeffs [3][3], const double quad[4][2]);

image The image to be passed to
iplWarpPerspective()

coeffs Output array: perspective transform coefficients.

quad Coordinates of the 4 points to which theage 's
ROl vertices would be mapped by
iplWarpPerspective()

Discussion

The functioniplGetPerspectiveTransform() computes the

iplWarpPerspective() transform coefficients, given the vertices of the

quadrangle to which thirage 's ROl would be mapped by

iplwarpBilinear() with these coefficients.

11-27



Intel® Image Processing Library Reference Manual

Arbitrary Transforms

To perform special geometric transforms not covered in the above sections,
the Image Processing Library includes theemap()  function. Unlike

other geometric transform functionsiRemap()  uses coordinate tables
supplied by the application. For each pixel in the destination image, you
have to provide coordinates of the source image’s point which you would
like to be mapped to that destination pixel.

Remap

Re-maps the image using a
coordinate look-up table.

void ipIRemap(Iplimage* srclmage , Iplimage* xMap,
Iplimage *  yMap, Iplimage* dstimage
int interpolate );

srclmage The source image.
dstimage The resultant image.
xMap One-channel 32-bit floating-point image storing

the table ofx-coordinates.

yMap One-channel 32-bit floating-point image storing
the table ofy-coordinates.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC  Cubic interpolation.

11-28



Geometric Transforms

Discussion

The functioniplRemap() maps the imagercimage to dstimage using a
coordinate table supplied by the application in the images andyMap.
To each pixel in the destination image/mage , the function assigns the
value taken from the poink(y) in the source image; the coordinateand
y are retrieved from the locations iviap andyMap corresponding to the
destination pixel.

Your application has to compute the floating-point coordinates and store
them inxMap andyMap prior to callingiplRemap() ; see Example 11-2.

Data order and bit depth afcimage anddstimage must be the same.

The function supports source and destination images with 1-bit, 8-bit
unsigned, and 16-bit unsigned pixel channels. ROIs and tilingcofage
anddstimage are supported. Mask is not directly supported. For masking
some of the image pixels, you can just specify the correspondamgly
values that are outside the source image’s ROI.

Example 11-4 Re-mapping an Image

int example_remap( void ) {
const int width = 8, height = 8;
int x, y; float norm;
/Il source and destination images: 8u
Iplimage *src = iplCreatelmageJaehne(IPL_DEPTH_8U,
width,height);
Iplimage *dst = iplCreatelmageHeader (
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL,
NULL, NULL, NULL );
/Il create images for x and y coordinates
Iplimage *xmap = iplCreatelmageJaehne(IPL_DEPTH_32F,
width, height);
Iplimage *ymap = iplClonelmage( xmap );
continued [

11-29



Intel® Image Processing Library Reference Manual

Example 11-4 Re-mapping an Image (continued)

/Il allocate memory destination with zero data
iplAllocatelmage( dst, 1, 0 );
/Il provide the x and y coordinates
/Il these coords map the image to an identical one
for( y=0; y<height; ++y ) {
float yy = (float)y;
for( x=0; x<width; ++x ) {
float xx = (float)x;
iplPutPixel( xmap, X, y, &xx );
iplPutPixel( ymap, X, y, &yy );

}

/Il now remap to get the same image

iplRemap( src, xmap, ymap, dst, IPL_INTER_LINEAR );
/Il find max abs difference, should be 0

norm = (float)ipINorm( src, dst, IPL_C );

/Il deallocate images

iplDeallocate( xmap, IPL_IMAGE_ALL );

iplDeallocate( ymap, IPL_IMAGE_ALL );

ipIDeallocate( src, IPL_IMAGE_ALL );

iplDeallocate( dst, IPL_IMAGE_ALL );

return IPL_StsOk == iplGetErrStatus() && norm == 0;

11-30



Image Statistics Functions

This chapter describes the Image Processing Library functions that allow
you to compute the following statistical parameters of an image:

+ theC, L, andL, norms of the image pixel values

* spatial moments of order 0 to 3
« central moments of order 0 to 3

* minimum and maximum pixel values (for floating-point data only)

Table 12-1 lists the image statistics functions.

Table 12-1 Image Statistics Functions
Group Function Name Description
Norms ipINorm Computes the C, L,, or L, norm of pixel
values.
Moments iplMoments Computes all image moments of order
Oto 3.
iplGetCentralMoment Return image moments computed by
iplGetSpatialMoment ipIMoments()
iplGetNormalizedCentralMoment Return normalized image moments
iplGetNormalizedSpatialMoment computed by ipIMoments()
iplCentralMoment Compute an image moment of the
iplSpatialMoment specified order.
ipINormalizedCentralMoment Compute a normalized image moment
ipINormalizedSpatialMoment of the specified order.
Cross- ipINormCrossCorr Computes the normalized cross-
correlation correlation of an image and a template.

Minimum and
maximum

ipIMinMaxFP

Retrieves the actual minimum and
maximum pixel values in an image with
32-bit floating-point data.

12-1



1 2 Intel® Image Processing Library Reference Manual

Image Norms

TheipiNorm()  function described in this section allows you to compute
the following norms of the image pixel values:

* L, norm (the sum of absolute pixel values)

* L, norm (the square root of the sum of squared pixel values)

* Cnorm (the largest absolute pixel value).

This function also helps you compute the norm of differences in pixel

values of two input images as well as the relative error for two input
images.

Norm

Computes the norm of pixel
values or of differences in pixel
values of two images.

double ipINorm(Iplimage* srclmageA , Iplimage* srclmageB
int  normType);

srclmageA The first source image.
srclmageB The second source image.
normType Specifies the norm type. Canbbe_C, IPL_L1 , or

IPL_L2 ; if the srcimageB pointer is notNULL, the

normType argument can also beL_RELATIVEC,

IPL_RELATIVEL1 , Oor IPL_RELATIVEL2 .
Discussion

You can use theIiNorm()  function to compute the following norms of
pixel values:

12-2



Image Statistics Functions

(1) the norm ofsrcimageA  pixel values|ja|
(2) the norm of differences of the source images’ pixel val{jas, b|
(3) the relative errofja- bj|/|[p|| (see formulas below).

Leta={a}andb={b} be vectors containing pixel values efc/mageA
andsrcimageB , respectively (all channels are used except alpha channel).

(1) If the srcimageB  pointer iSNULL, the function returns the norm of
srclmageA pixel values:

12] Ll = Zk |ak| for normType =IPL_L1
||a| Lz = (Zk |ak|2)1/2 for normType =1PL_L2
|leflc = max, [a| for normType =IPL_C.

(2) If the srcimageB  pointer is noNULL, the function returns the norm of
differences okrcimageA andsrcimageB pixel values:

lla- bj|, = 2, |ak - bkl for normType =1PL_L1
lla- bll,= (& [a- )" for normType = IPL_L2
|la- bl = max |¢’:‘4k - bkl for normType =IPL_C.

(3) If normType is IPL_RELATIVEC, IPL_RELATIVEL1 , Or

IPL_RELATIVEL2 , thesrcimageB pointer must not belULL

The function first computes the norm of differences, as defined in (2). Then
this norm is divided by the norm d, and the function returns the relative
error|fa- bi|/ [p|.

Return Value

The computed norm or relative error in double floating-point format.

12-3



Intel® Image Processing Library Reference Manual

12-4

Example 12-1 Computing the Norm of Pixel Values

int example51( void ) {
Iplimage *imga, *imgb;
const int width = 4;
const int height = 4;
double norm;
_try {
imga = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, height, width, NULL, NULL,
NULL, NULL);
if( NULL == imga ) return O;
imgb = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_QWORD, height, width, NULL, NULL,
NULL, NULL);
if( NULL == imgb ) return O;
iplAllocatelmage( imga, 1, 127 );
if( NULL == imga->imageData ) return O;
iplAllocatelmage( imgb, 1, 1 );
if( NULL == imgb->imageData ) return O;

norm = ipINorm( imga, imgb, IPL_RELATIVEC );
/I Check if an error occurred
if( iplGetErrStatus() != IPL_StsOk ) return O;

}

_ finally {
ipIDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);
iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();




Image Statistics Functions

Image Moments

Spatial and central moments are important statistical characteristics of an
image. The spatial moment (m,n) and central momend (m,n) are
defined as follows:

nRows-1nCols-1

Mo(mn)= 3 5 X'y B,

nRows-1nCols-1

Uymm=5 5 (x- %)"(y-¥) P

where the summation is performed for all rows and columns in the image;
P, are pixel valuesx, andy, are pixel coordinatesnandn are integer
power exponentss, andy, are the gravity center’s coordinates:

X, = M,(1,00M,(0,0)
y, = M(0,1)M(0,0).

The sum of exponents + nis called the moment order. The library
functions support moments of order 0 to 3 (that i @1 + n < 3).

In the Image Processing Library image moments are stored in structures of
thelplMomentState  type. The type declaration is given below.

IpIMomentState Structure Definition

typedef struct {
double scale /* scaling factor for the moment */
double value /¥ the moment */

} ownMoment;

typedef ownMoment IpIMomentState[4][4];

12-5



Intel® Image Processing Library Reference Manual

12-6

Moments

Computes all image
moments of order 0 to 3.

void ipIMoments(Iplimage* image , IpIMomentState mState ),

image The image for which the moments will be
computed.

mState The structure for storing the image moments.

Discussion

The functionipilMoments() ~ computes all spatial and central moments of
order 0 to 3 for themage . The moments and the corresponding scaling
factors are stored in theState structure. To retrieve a particular moment
value, use the functions described in the sections that follow.

GetSpatialMoment

Returns a spatial moment
computed by ipIMoments.

double iplGetSpatialMoment(IpIMomentState mState , int
mOrd, int  nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponenta andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.



Image Statistics Functions

Discussion

The functioniplGetSpatialMoment() returns the spatial moment
M, (m,n) previously computed by theiMoments()  function.

GetCentralMoment

Returns a central moment
computed by ipIMoments.

double iplGetCentralMoment(IpIMomentState mState , int
mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponenta andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functioniplGetCentralMoment() returns the central moment
U,(m,n) previously computed by theiMoments()  function.

GetNormalizedSpatialMoment

Returns the normalized
spatial moment computed
by ipIMoments.

double iplGetNormalizedSpatialMoment(IpIMomentState
mState , int mOrd, int nOrd);

12-7



Intel® Image Processing Library Reference Manual

12-8

mState The structure storing the image moments.

mOrd, nOrd The integer exponenta andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functioniplGetNormalizedSpatialMoment() returns the
normalized spatial momeM, (m,n)/(nCols "-nRows’), whereM,(m,n) is
the spatial moment previously computed by ifigoments()  function,
nCols andnRows are the numbers of columns and rows, respectively.

GetNormalizedCentralMoment

Returns the normalized
central moment computed
by ipIMoments.

double iplGetNormalizedCentralMoment(IpIMomentState
mState , int mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponenta andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functioniplGetNormalizedCentralMoment() returns the
normalized central momett (m,n)/(nCols "-nRows’), whereU (m,n) is
the central moment previously computed by ithigoments()  function,
nCols andnRows are the numbers of columns and rows, respectively.



Image Statistics Functions

SpatialMoment

Computes a spatial

moment.
double iplSpatialMoment(Iplimage* image, int  mOrd, int
nOrd);
image The image for which the moment will be
computed.
mOrd, nOrd The integer exponenta andn (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functioniplSpatialMoment() computes the spatial momevit,(m,n)
for the image .

CentralMoment

Computes a central

moment.
double iplCentralMoment(Iplimage* image, int  mOrd, int
nOrd);
image The image for which the moment will be
computed.
mOrd, nOrd The integer exponenta andn (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

12-9



Intel® Image Processing Library Reference Manual

12-10

Discussion

The functionipICentralMoment() computes the central momedg(m,n)
for the image .

NormalizedSpatialMoment

Computes a normalized
spatial moment.

double ipINormalizedSpatialMoment(Iplimage* image, int
mOrd, int nOrd);

image The image for which the moment will be
computed.
mOrd, nOrd The integer exponenta andn (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functionipINormalizedSpatialMoment() computes the normalized
spatial momenm, (m,n)/(nCols "nRows") for the image .

HereM (m,n) is the spatial moment,Cols andnRows are the numbers of
pixel columns and rows, respectively.



Image Statistics Functions

NormalizedCentralMoment

Computes a normalized
central moment.

double ipINormalizedCentralMoment(Iplimage* image, int
mOrd, int  nOrd);

image The image for which the moment will be
computed.
mOrd, nOrd The integer exponenta andn (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
0< mOrd+ nOrd < 3.

Discussion

The functionipINormalizedCentralMoment() computes the normalized
central moment (m,n)/(nCols ™-nRows") for theimage .

HereU (mn) is the central moment,Cols andnRows are the numbers of
pixel columns and rows, respectively.

12-11



Intel® Image Processing Library Reference Manual

12-12

Cross-Correlation

This section describes th@NormCrossCorr() function that allows you

to compute the cross-correlation of an image and a template (another
image). The cross-correlation values are image similarity measures: the
higher cross-correlation at a particular pixel, the more similarity between
the template and the image in the neighborhood of the pixel.

The mathematical definition of the cross-correlatiRyr,c) between a
template and an image at the pixel in ro@nd columrcis given by this
equation:

tplRows-1tplCols-1

R,(r.c)= Z Zt(j,i) X(r + j —tplRows 2,c +i —tplCols/ 2)
1= 1=

wherex(r,c) is the image’s pixel value in rowand columrc, andt(r,c) is
the template’s pixel value; the template sizéi€olsx tplRows

TheipINormCrossCorr() function of the Image Processing Library
computesiormalizedcross-correlation valuep,(r,c), defined as follows:

i} Ry(r.c)
24 (r.c) A\/Rxx(r,c)R“(tp|Rows’2,thC0Is/2)'

HereA is a factor for scaling the computed values to the full range of pixel
values in the destination imag®; andR, denote the auto-correlation of
the image and the template, respectively:

r+(tplRows-1)/2  c+(tplCols-1)/2

Ru(r,c) = Z Z XX
j=r—(tplRows-1)/2 i=c—(tplCols-1)/2

tplRows-1tplCols-1

R, (tpIRows 2,tplCols/ 2) = Z th,itj,i'
IEJNE



Image Statistics Functions

NormCrossCorr

Computes normalized cross-correlation
between an image and a template.

IPLStatus ipINormCrossCorr (Iplimage* srclmage
Iplimage* tpllmage , Iplimage* dstimage );

srclmage, tplimage The source and template images.
dstlmage The destination image.
Discussion

For each pixel irsrcimage , the functionipiINormCrossCorr() computes
the normalized cross-correlation valpgr,c) with the templatep/image
and stores the computed value in the corresponding pixel of the output
imagedstimage . The template anchor for matching the image pixel is
always at the geometric center of the template. (See the formuts, tor
the previous page.)

All three images passed t@NormCrossCorr() must have the same data
order (pixels or planes), origin (top-left or bottom-left), number of
channels, alpha channel number, and COI number. The function supports
images with 8-bit and 16-bit pixel data (both signed and unsigned) as well
as 32-bit signed and 32-bit floating-point data.

Both srcimage anddstimage can have any combination of ROIs
(rectangular ROIs, mask ROIs, and COIs). If you set any of these ROIs, the
function will update pixels ofistimage only in the intersection of all
applicable ROls.

Theplimage 's mask, even if present, has no effect on the results.

The source and destination images can be either tiled or non-tiled. The
template image must be non-tiled only.

The function returngL_StsOK on success, and an error status code on
failure.

12-13



Intel® Image Processig Library Referene Manual

12-14

Minimu m and Maximum

TheipiMinMaxFP( ) function describé in this sectia allows you to
compuée the minimum and maximum pixel values for an image with 32-bit
floating-poirt data.

MinMaxFP

Retrieve the minimum
and maxmum floating-
point pixd value.

IPLStatu s ipIMinMaxF P (cons t Iplimage* image, float* min,
float* max);

image The image with 32-bit floating-poirt pixel data
for which the minimum and maximum values
will be retrieved.

min, max The output values: minimum and maximum.

Discussion

The function ipiMinMaxFP( ) storesin min andmaxthe actual minimum
ard maximum pixel values of the image . The function returng’L_StsOK
on successard an errar statis code on failure.



User Defined Functions

This chapter describes library functions that enable users to create their
own image processing functions and make calls to them from application
programs. You can define functions that perform point operations either on
each channel value of processed pixels of an image separately, or on all
channel values simultaneously. Both integer and floating-point image data
can be processed.

To introduce your own image processing function, you must first define it
as one of the following types:

IplUserFunc For functions that operate on images with integer
data and process each channel value of a pixel
separately.

IplUserFuncFP For functions that operate on images with all data
types and process each channel value of a pixel
separately.

IplUserFuncPixel For functions that operate on images with all data
types and process all channel values of a pixel
simultaneously.

Afterwards you can call your own functions by using the respective library
functionsiplUserProcess() , IplUserProcessFP() , or
IplUserProcessPixel() , described later in this chapter.

13-1



Intel’ Image Processing Library Reference Manual

13-2

UserFunc

The type of user-defined
functions that perform point
operations on a separate
channel value of a pixel (for
images with integer data).

The prototype specified by the callback function of tyjeserFunc
must be as follows:

typedef int (__STDCALL *IplUserFunc)(int src);

src The source pixel channel value converted
toint type.

Discussion

The user function defined with the above prototype must take the channel
valuesrc of typeint as input and return the computed destination pixel
channel value also ast type. To use the function for image processing,

its name must be passed to the calling functitiserProcess() as the

last parameter in the arguments list.

The saturation of the returned result to the destination data range is done by
the calling function.

The user function of typelUserFunc ~ may calllPL_ERRORto set the
IPL error status.

SeeiplUserProcess() for more information.




User Defined Functions

UserFuncFP

The type of user-defined
functions that perform point
operations on a separate
channel value of a pixel (for
images with all data types).

The prototype specified by the callback function of tyjgeserFuncFP
must be as follows:

typedef float (__STDCALL *IplUserFuncFP)(float src ),

sre The source pixel channel value converted
tofloat type.

Discussion

The user function defined with the above prototype must takédire

channel valuerc as input and return the computed destination pixel
channel value also a@sat . To use the function for image processing, its
name must be passed to the calling functiginserProcessFP() as the

last parameter in the arguments list.

The saturation of the returned result to the destination data range is done by
the calling function in case when the source and destination images contain
integer data.

The user function of typelUserFuncFP  may calllPL_ERRORto set the
IPL error status.

SeeiplUserProcessFP() for more information.

13-3



Intel’ Image Processing Library Reference Manual

UserFuncPixel

The type of user-defined
functions that perform point
operations simultaneously on
all channel values of a pixel
in an image.

The prototype specified by the callback function of type

IplUserFuncPixel must be as follows:

typedef void (__STDCALL *IplUserFuncPixel)(Ipllmage*
srclmage , void*  srcPixel , Iplimage* dstimage , void*
dstPixel );

srclmage The source image header (used by the

function to determine the source image
depth and number of channels).

dstimage The destination image header (used by the
function to determine the destination image
depth and number of channels).

srcPixel Pointer to the array of channel values of the
source pixel.
dstPixel Pointer to the array of channel values of the
destination pixel.
Discussion
Function of the typeplUserFuncPixel performs user-defined point

operations on a source image pixel by processing all channel values of a
given pixel simultaneously. Thecpixe/ anddstPixel  pointers must

be converted by the user function to arrays of source and destination
channel values that have respective bit depths.

To use the function for image processing, its name must be passed to the
calling functioniplUserProcessPixel() as the last parameter in the
arguments list.

13-4



User Defined Functions 1 3

If saturation of the computed result is necessary, it must be provided within
the user function.

The user function of typalUserFuncPixel may calllPL_ERRORt0 set

the IPL error status.

See iplUserProcessPixel() for more information.
UserProcess

Calls user-defined function
to separately process each
channel value of pixels in an
image with integer data.

void iplUserProcess( Iplimage* srclmage , Iplimage*
dstimage , IplUserFunc cbFunc ),

srclmage The source image.
dstlmage The destination image.
cbFunc The pointer to the user-defined function (of

IplUserFunc  type).

Discussion

The functioniplUserProcess() scans pixels of a source image

srclmage , retrieves respective channel values, and passes them to the user-
defined functiorncbFunc for processing.

The source image must contain integer data of 8-, 16-, or 32-bit depth.
Before passing channel valuesdo-unc , the function

iplUserProcess() converts them tont  type.

After processing bybFunc , the returned values are saturated to the
destination data range, and written to the respective channel of the
destination imagest/mage . The saturation is done only for 8- or 16-bit

13-5



Intel’ Image Processing Library Reference Manual

data. To perform saturation of 32-bit integer data, use
iplUserProcessFP() function instead.

The functioniplUserProcess() supports tiled images and images with
rectangle ROI and mask ROI. The operations can be performed in-place.
The source and destination images must contain data of the same bit depth
and have the same number of processed channels.

Example 13-1 Image Channel Values Processing by User Defined Function

static int _ STDCALL bw( int src ) {
if( src < 127 ) return O;
return 255;

}

void UserFunc( void ) {

Iplimage *imga = iplCreatelmageJaehne( IPL_DEPTH_8U,
16, 5 );
Iplimage *imgb = iplClonelmage( imga );

iplUserProcess( imga, imgb, bw );

iplDeallocate( imga, IPL_IMAGE_ALL );
iplDeallocate( imgb, IPL_IMAGE_ALL );

13-6



User Defined Functions

UserProcessFP

Calls user-defined function
to separately process each
channel value of pixels in

images with all data types.

void iplUserProcessFP( Iplimage* srclmage , Iplimage*
dstimage , IplUserFuncFP cbFunc ),

srclmage The source image.
dstlmage The destination image.
cbFunc The pointer to the user-defined function (of

IplUserFuncFP  type).

Discussion

The functioniplUserProcessFP() scans pixels of a source image

srclmage , retrieves respective channel values, and passes them to the user-
defined functiorcbFunc for processing. The source image can contain

either integer data of 8-, 16-, 32-bit depth, or floating-point 32f data.

Before passing channel valuesda-unc , the function

iplUserProcessFP() converts them tdoat  type.

After processing bybFunc , the returned values are saturated to the
destination data range (except the case of 32f image data), and written to
the respective channel of the destination imagenage .

The functioniplUserProcessFP() supports tiled images and images with
rectangle ROI and mask ROI. The operations can be performed in-place.
The source and destination images must contain data of the same bit depth
and have the same number of processed channels.

13-7



Intel’ Image Processing Library Reference Manual

13-8

UserProcessPixel

Calls user-defined function to
simultaneously process channel
values of pixels in an image.

void iplUserProcessPixel( Iplimage* srclmage , Iplimage*
dstimage , IplUserFuncPixel cbFunc ),

srclmage The source image.

dstlmage The destination image.

cbFunc The pointer to the user-defined function (of

IplUserFuncPixel type).

Discussion
Use the functionplUserProcessPixel() if you want to call your own
image processing functiafbFunc of typelplUserFuncPixel that

performs point operations using all channel values of a pixel.

For each pixel to be processed, the functigoserProcessPixel()

creates arrays of source and destination pixel channel values, and calls the
function cbFunc , passing the pointers to these arrays as arguments. Thus,
all channel values of a source image pixel are processed simultaneously.
After processing bybFunc , the results are placed into the respective pixel
channel values of the destination imag@mage without saturation.

When necessary, saturation should be providedisyinc .

On return fromebFunc , the functioniplUserProcessPixel() checks

IplError() status to see if an error has occurred.

The source image can contain either integer data of 8-, 16-, 32-bit depth, or
floating-point 32f data. The bit depths and the number of channels in the
source and destination images may be different. The function
iplUserProcessPixel() supports tiled images and images with rectangle
ROI and mask ROI. The channel ROl is not supported, it must be provided
by the user function when necessary.



User Defined Functions

Example 13-2 Pixel Values Processing by User Defined Function

static void _ STDCALL rgb2gray( Iplimage* srclmage,
void* srcPixel, Ipllmage* dstimage, void* dstPixel )

uchar* src = (uchar*)srcPixel;

uchar* dst = (uchar*)dstPixel;

if( 1 != dstimage->nChannels ) {
IPL_ERROR( IPL_BadNumChannels, "rgb2gray",
"Output image must be one-channel image");
return;

}
dst[0] = (uchar)( 0.212671 * src[0] +
0.71516 * src[1] + 0.072169 * src[2] + 0.5 );
}

void exmRgb2Gray( void ) {

const int side = 5;

IpIROI'ro i ={1, 0, 0O, side, side };

Iplimage *jmg, *dst, *src = iplCreatelmageHeader(
3, 0, IPL_DEPTH_8U, "RGBA", "BGRA",
IPL_DATA ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, side, side, &roi, NULL,
NULL, NULL);

iplAllocatelmage( src, 0, 0 );

dst = iplCreatelmageHeader(
1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, side, side, NULL, NULL,
NULL, NULL);

iplAllocatelmage( dst, 1, 0 );

jmg = iplCreatelmageJaehne( IPL_DEPTH_8U, side, side );
iplCopy( jmg, src );

src->roi = 0;

iplUserProcessPixel( src, dst, rgb2gray );

iplDeallocate( jmg, IPL_IMAGE_ALL );

iplDeallocate( dst, IPL_IMAGE_ALL );

iplDeallocate( src, IPL_IMAGE_ALL );

13-9



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Library Version

This chapte describs the function iplGetLibVersion( ) tha returrsthe
versian numbe ard othe information abou the Image Processig Library.

GetLibVersion

Returrs information abou the
library version.

const IPLLibVersion * iplGetLibVersion(void);

Discussion

The function iplGetLibVersion( ) retrieves the following information
abou the Image Processig Library:

* maja versiacn number

* minor versian number

e build number

e DLL or statc library file name
e versian numbe string

* internd versim string

e build datke string

« calling conventim string

Retur n Value

The function returrs the library information in the structure
IPLLibVersion

141



Intel” Image Processixy Library Referene Manual

14-2

TheIPLLibVersio

n structue is defined as follows:

typede f struc t _IPLLibVersio n {

}

int major;
int minor;
int build;

const char *
const char *
const char *

const char *
const char *

IPLLibVersion;

/* eg. 2 */
/* eg. O */
/* eg. 1 */
Name; /* "ipl6lLlib","iplm5.dll "o
Version; /* eqg. "v2.00" */
InternalVersion; /* e.qg.
"[2.00.01.023,01/01/99]" */

BuildDate ; /* eg. "Jan 1 99" */
CallConv;



Supported Image Attributes
and Operation Modes

This appendix contains tables that list the supported image attributes and
operation modes for functions that have input and/or output images.
Theipl prefixes in the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions
Input and output images Rect. In-place Tiling
Function Depths must have the same ROI
depth order origin Col supported (x)
Set uorst operates on a single image X X X
SetFP. 3211 operates on a single image X X X
PutPixel all operates on a single image X
GetPixel all operates on a single image X
Copy all X X X X X X X
Clonelmage all X X X X X X X
Exchange all X X X X X X X
Scale uors X X X X X
ScaleFP 32fF X X X X X
Noiselmage all X X X X X X X
Convert uors X

Tuors= 1u, 8s, 8u, 16s, 16u, 32s bits per channel; u = unsigned; s = signed; f=float.
+ only one of the images is 32f, the other must be 8s, 8u, 16s, 16u, 32s bits per channel

A-1



Intel® Image Processing Library Reference Manual

A-2

Table A-2 Windows DIB Conversion Functions
Function Depths Input and output images have the same
input output order origin number of channels
ConvertFromDIB allt 1u,8u,16u
ConvertFromDIBSep alnt 1u,8u,16u
ConvertToDIB 1u,8u,16u allf X
ConvertToDIBSep 1u,8u,16u allt X
TranslateDIB 1lbpp 1u clone X X
24bppfF 8u clone X X

tall=1, 4, 8, 16, 24, 32 bpp DIB images;
>4bpp stands for 4, 8, 16, 24, 32 bpp DIB images.

For iplConvertFromDIB and iplConvertFromDIBSep  , the number of channels, bit depth
per channel and the dimensions of the Iplimage  should be greater than or equal to those of
the DIB image. When converting a DIB RGBA image, the Iplimage should also contain an
alpha channel.



Supported Image Attributes and Operation Modes

Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions
Input and output images Rect. In-place Tiling Mask
Function Depths must have the same ROI
depth order origin COI supported (x)
Abs uorst  x X X X X X X X
AddS uors X X X X X X X X
SubtractS uors X X X X X X X X
MultiplyS uors X X X X X X X X
AddSFP 32f X X X X X X X X
SubtractSFP 32f X X X X X X X X
MultiplySFP 32f X X X X X X X X
MultiplySScale 8u,16u X X X X X X X X
Square alt X X X X X X X X
Add all X X X X X X X X
Subtract all X X X X X X X X
Multiply all X X X X X X X X
MultiplyScale 8u,16u X X X X X X X X
LShiftS uors X X X X X X X X
RShiftS uors X X X X X X X X
Not uors X X X X X X X X
AndS uors X X X X X X X X
Oors uors X X X X X X X X
XorS uors X X X X X X X X
And uors X X X X X X X X
Or uors X X X X X X X X
Xor. uors X X X X X X X X

Tuors= 1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

A-3



Intel® Image Processing Library Reference Manual

A4

Table A-4 Image Attributes and Modes of Alpha-Blending Functions
Input and output images | Rect. In-place Tiling Mask
Function Depths must have the same ROI
depth order origin COI supported (x)
PreMultiplyAlpha 8u,16u X X X X X X X X
AlphaComposite 8u,l6u X X X X X X
AlphaCompositeC 8u,16u  x X X X X X
Table A-5 Image Attributes and Modes of Filtering Functions
Input and output images | Rect. Border In- Tiling Mask
Function Depths must have the same ROl Mode place
depth order origin COI supported (x)
Blur uors X X X X X X X X
Convolve2D uors X X X X X X X X X
Convolve2DFP 32f X X X X X X X X
ConvolveSep2D uors X X X X X X X X
ConvolveSep2DFP 32f X X X X X X X X
MaxFilter uors X X X X X X X X
MinFilter uors X X X X X X X X
MedianFilter uors X X X X X X X X
ColorMedianFilter 8ul/s, X X X X X X X X
16u/s,32f
FixedFilter all X X X X X X X X
Table A-6 Image Attributes and Modes of Fourier and DCT Functions
Input & output images | Rect. In- Tiling Mask
Function Depths have the same ROl place
input output |order origin COI supported (x)
DCT2D >8u/st, 32f >8uls, 32f  x X X
RealFft2D =8u/s, 32f =8uls, 32f X X X X
CcsFft2D >8uls, 32f =8uls, 32f X X X X
MpyRCPack2D >8s, 32f >8s, 32f X X

+ >8uls stands for 8u, 8s, 16u, 16s, 32s; =8s stands for 8s, 16s, 32s bhits per channel



Supported Image Attributes and Operation Modes

Table A-7 Image Attributes and Modes of Morphological Operations

Function | Depths

Input and output images
must have the same

Rect.
ROI

Border In-place  Tiling
Mode

depth order origin COlI

supported (x)

Erode  1u,8u,16u X X X X X X X X
Dilate 1u,8u,16u X X X X X X X X
Open 1u,8u,16u X X X X X X X X
Close  1u,8u,16u X X X X X X X X
Table A-8 Image Attributes and Modes of Color Space Conversion Functions
Input & output images Rect. In- Tiling
Function Depths have the same ROl  place
input output depth order origin COIl | supported (x)
ReduceBits 32s 1u, 8u,16u, 32s X X X X
16u 1u, 8u,16u X X X X
8u 1u, 8u X X X X
GrayToColor 32s,  colorf X X X X
gray’
ColorToGray colort  gray® X X X X
BitonalToGray 1u >8u/st X
RGB to/from other 8u,16u,32s; X X X X X
color model for LUV, also 32f
ApplyColorTwist 8u,16u X X X X X X X
ColorTwistFP 32f X X X X X X X

T gray = 1u, 8u, 16u bits per pixel
color = 8u, 16u, 32s bits per channel

+ >8uls = 8u, 8s, 16U, 16s,

32s hits per channel

A-5



Intel® Image Processing Library Reference Manual

A-6

Table A-9 Image Attributes and Modes of Histogram and Thresholding Functions

Input and output images Rect. In-place  Tiling
Function Depths must have the same ROI
depth order origin COI supported (x)
Threshold 8u,8s,16u, X X X M M X
16s, 32sT
ComputeHisto 1u,8u,16u no output image X X
HistoEqualize 8u,16u X X X X X X X
ContrastStretch 8u,16u X X X X X X X
Compare functions ali X X X X X X

Toutput image can also be 1u bit per channel
+ Functions with FP postfix compare 32f data; in-place mode for 1u images is not supported.

Table A-10  Image Attributes and Modes of Geometric Transform Functions
Input and output images | Rect. In- Tiling Mask

Function Depths must have the same ROl place

depth order origin COI supported (x)
Mirror 1u,8u,16u,32f X X X X X X X X
Rotate 1u,8u,16u,32f X X X X X X
Zoom 1u,8u,16u,32f X X X X X X X
Decimate 1u,8u,16u,32f X X X X X X
DecimateBlur 1u,8u,16u,32f X X X X X X
Resize 1u,8u,16u,32f X X X X X X
WarpAffine 1u,8u,16u,32f X X X X X X
WarpBilinear 1u,8u,16u,32f X X X X X X
WarpBilinearQ 1u,8u,16u,32f X X X X X X
WarpPerspective 1u,8u,16u,32f X X X X X X
Warp 1u,8u,16u,32f X X X X X X
PerspectiveQ
Shear. 1u,8u,16u,32f X X X X X X
M)T 1u,8u,16u,32f X X X X X X

Tin iplRemap , the mapping coordinates are stored in one-channel 32-bit floating-point images.



Supported Image Attributes and Operdion Modes

Table A-11  Image Attribute s and Mode s of Image Statisctic s Functions
All images Rect.  Tiling Mask
Function Depths must have the same ROI
depth order origin COI supported (x)
Norm ant X X X X X X X
Moments all operates on a single image X X X
[Normalized] all operates on a single image X X X
SpatialMoment
[Normalized] all operates on a single image X X X
CentralMoment
NormCrossCorr >8 X X X X X X X
MinMaxFP 32f operates on a single image X X

T Bit depth short hand:

uors=1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)

all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel
>8 stands for 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

Table A-12  Image Attribute s and Modes of Function s for User-Define d Image
Processing
All images Rect.  Tiling Mask
Function Depths must have the same ROI
depth order origin COI supported (x)
UserProcess >8us T x X X X X X X
UserProcessFP >8 X X X X X X X
UserProc essPixel >8 X X nis X X X

T Bit depth short hand:

>8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

>8 stands for 8u, 8s, 16u, 16s, 32s, or 32f bits per channel
+nls -not supported

A-7



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Interpolation in
Geometric Transform Functions

This appendix describes the interpolation algorithms used in the geometric
transformation functions of the Image Processing Library. For more
information about each of the geometric transform functions, see

Chapter 11Geometric Transforms

Overview of Interpolation Modes

In geometric transformations, the grid of input image pixels is not
necessarily mapped onto the grid of pixels in the output image. Therefore,
to compute the pixel intensities in the output image, the geometric
transform functions need toterpolatethe intensity values of several input
pixels that are mapped to a certain neighborhood of the output pixel.

Geometric transformations can use various interpolation algorithms. When
calling the geometric transform functions of the Image Processing Library,
the application code specifies the interpolation mode (that is, the type of
interpolation algorithm) by using the parameteerpolate . The library
supports the following interpolation modes:

» nearest neighbor interpolatiom#rpolate = IPL_INTER_NN)
* linear interpolation igterpolate = IPL_INTER_LINEAR )

» cubic interpolation iiterpolate = IPL_INTER_CUBIC)

e super-samplingifterpolate = IPL_INTER_SUPER)

B-1



Intel® Image Processig Library Referene Manual

B-2

Table B-1 lists the supporté interpolatian modes for all geometric
transfom functions For certain functions you can combire the above
interpolation algorithns with additiond smoothimg (antialiasing of edges
to which the origind images bordes are transformedTo use this edge
smoothing sd the parameternterpolate to the bitwise OR of
IPL_SMOOTH_EDE ard the desirel interpolation mode For example, in
orde to rotake an image with cubic interpolation and smodh the rotated
images edgesyou pasto iplRotate( ) thefollowing value:

interpolat e =IPL_INTER_CUBI C | IPL_SMOOTH_EDGE

Table B-1 Interpolatio n Mode s Supp orted by Geometric Transf orm Functions
Function Nearest neighbor  Linear Cubic  Super-sampling Edge smoothing
Mirror This function does not need interpolation
Rotate X X X X
Zoom X X X
Decimate X X X X
DecimateBlur X X X
Resize X X X X
WarpAffine X X X X
WarpBilinear X X X X
WarpBilinearQ X X X X
Warp X X X X
Perspective
Warp X X X X
PerspectiveQ
Shear. X X X X

The sectiors that follow provide more detaik on ead interpolation mode.



Interpolation in Geometric Transformation Functions B

Mathematical Notation

In this appendix we’ll use the following notation:

(X5:Yo) pixel coordinates in the destination image
(integer values)

(X5 Yo the computed coordinates of a point in the source
image that is mapped exactly tq f/,)

%, Y) pixel value (intensity) in the source image

D(x,y) pixel value (intensity) in the destination image.

Nearest Neighbor Interpolation

This is the fastest and least accurate interpolation mode. The pixel value in
the destination image is set to the value of the source image’s pixel closest

to the point &,Y9): D(X5,Y,) = Sroundk,),roundg,)).

To use the nearest neighbor interpolation, set the parametep/ate
to IPL_INTER_NN.

Linear Interpolation

The linear interpolation is slower but more accurate than the nearest
neighbor interpolation. On the other hand, it is faster but less accurate than
cubic interpolation. The linear interpolation algorithm uses source image

intensities at the four pixels{,yy), Xq.Yo): KsYs)r KgYs) Which are
closest to XY, in the source image:

Xo T INt(X), Xg =Xyt 1, Yo =iNt(Yd, Vg =VYe + 1.

First, the intensity values are interpolated alongxais to produce two
intermediate result andl, (see Figure B-1):

ly= SXs Vo) = SXepr Ya)* (Xq = X + Xy Ya)* (X — Xgp)
I, = SXs Ya) = e Ya)* (K = X + AXq Yar)* (X — Xop)-

B-3



B

Intel® Image Processing Library Reference Manual

Figure B-1

Then, the sought-for intensi(x,,Y,) is computed by interpolating the
intermediate valuek andl, along they-axis:

D(XD’yD) = Io* (y51 - ys) + |1* (ys_ yso)-
To use the linear interpolation, set the parameterpolate to
IPL_INTER_LINEAR .

For images with 1-bit and 8-bit unsigned color channels, the functions
iplwarpAffine  , iplRotate , andiplShear compute the coordinates

(X,YJ with the accuracy 2° = 1/65536. For images with 16-bit unsigned
color channels, these functions compute the coordinates with floating-point
precision.

Linear Interpolation

B-4

Aintensity

XsYs0)




Interpolation in Geometric Transformation Functions B

Cubic Interpolation

The cubic interpolation algorithm (see Figure B-2) uses source image
intensities at sixteen pixels in the neighborhood of the peigt] in the
source image:

X =INt(xg) - 1 Xg=Xy+1 Xg =X+ 2 Xg =X+ 3
Vo=intYd- 1 Va=Vo+l  Vo=Vo+t2  Yg=VYqo+t3.

First, for eacty,, the algorithm determines four cubic polynomi&lgx),
F.(%), F(x), andF,(X):

F () =axX +bx +cx+d, 0<k<3,

such that

FilXo) = X0 ¥sdr FulXa) = SXs) Vsd: FilXe) = e ¥sd: FiulXs) = SXaYs)-
In Figure B-2, these polynomials are shown by solid curves.

Then, the algorithm determines a cubic polynonfigy) such that

F,(Ve) = Fo®9), F(Ya) = Fi(X9), F(Ye) = FAX), F(Ys) = Fo(X).

The polynomiaF (y) is represented by the dashed curve in Figure B-2.
Finally, the sought-for intensitip(x,,Y,) is set to the valu& (y,).

To use the cubic interpolation, set the parameierpolate to
IPL_INTER_CUBIC.

For images with 1-bit and 8-bit unsigned color channels, the functions
iplwarpAffine  , iplRotate , andiplShear compute the coordinates

(X,Y with the accuracy 2° = 1/65536. For images with 16-bit unsigned
color channels, these functions compute the coordinates with floating-point
precision.

B-5



Intel® Image Processing Library Reference Manual

Figure B-2  Cubic Interpolation

fintensity

Super-Sampling

If the destination image is much smaller than the source image, the above
interpolation algorithms may skip some pixels in the source image (that is,
these algorithms not necessarily use all source pixels when computing the
destination pixels’ intensity). In order to use all pixel values of the source
image, theplDecimate  andiplResize  functions support theuper-
samplingalgorithm, which is free of the above drawback.

The super-sampling algorithm is as follows:

(1) Divide the source image’s rectangular ROI (or the whole image, if there
is no ROI) into equal rectangles, each rectangle corresponding to some
pixel in the destination image. Note that each source pixel is represented by
a Ix1 square.

(2) Compute a weighted sum of source pixel values for all pixels that are
contained in the rectangle or have a non-zero intersection with the
rectangle. If a source pixel is fully contained in the rectangle, that pixel's
value is taken with weight 1. If the rectangle and the source pixel's square
have an intersection of area< 1, that pixel’s value is taken with weight



Interpolation in Geometric Transformation Functions

Figure B-3

For each source pixel intersecting with the rectangle, Figure B-3 shows the
corresponding weight value.

(3) To compute the pixel value in the destination image, divide this
weighted sum by the rectangle argarc*ySrc)/(xDst*yDst)

HerexSrc , xDst , ySrc , andyDst are parameters passed to the functions
iplDecimate  andiplResize  to set the decimation ratio®st /xSrc and
yDst lySrc .

Super-sampling Weights

To use super-sampling, set the valee INTER_SUPER for the parameter
interpolate

B-7



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Bibliography

This bibliography provides a list of publications that might be useful to the
Image Processing Library users. This list is not complete; it serves only as
a starting point. The books [Rogers85], [Rogers90], and [Foley90] are

good resources of information on image processing and computer graphics,
with mathematical formulas and code examples.

The Image Processing Library is part of IfitBlerformance Library Suite.
The manuals [RPL] and [SPL] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Library Suite.

[Bragg] Dennis BraggA simple color reduction filterGraphic
Gems IlI: 20-22.
[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner,

and John F. Hughe€omputer Graphics — Principles
and Practice Second Edition. Addison Wesley, 1990.

[J95] Jaehne, Berndigital Image Processing3rd Edition,
Springer-Verlag, Berlin 1995.

[J97] Jaehne, BerndPractical Handbook on Image Processing
for Scientific ApplicationsCRC Press, New York, 1997.

[Rec709] ITU-R Recommendation BT.7(Basic Parameter
Values for the HDTV Standard for the Studio and
International Programme Exchand@rmerly CCIR
Rec.709] ITU, Geneva, Switzerland, 1990.

[Rogers85] David Roger®rocedural Elements for Computer
Graphics,McGraw-Hill, 1985.

[Rogers90] David Rogers and J.Alan Adarivgathematical
Elements for Computer GraphidsicGraw-Hill, 1990.

Biblio-1



Biblio-2

Intel’ Image Processing Library Reference Manual

[RPL] Intel® Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785.
[SPL] Intel® Signal Processing Library Reference Manual.

Intel Corp. Order number 630508.

[Schumacher] Dale A. Schumach@&rcomparison of digital halftoning
techniguesGraphic Gems Ill: 57-71.

[Thomas] Spencer W. Thomas and Rod G. Bodaalor
dithering Graphic Gems II: 72-77.

You may also find useful the following publications, which are not
referenced in this manual but contain valuable information on particular
functions:

Geometrical transforms
G.Wolberg.Digital Image Warping IEEE Computer Society Press, 1996.
Wavelet transforms

A.Akansu, M.Smith (editors)Subband and Wavelet transform. Design
and ApplicationsKluwer Academic Publishers, 1996.

Median filter
H.Myler, A.Weeks Computer Imaging Recipes in €rentice Hall, 1993.

Randy CraneA Simplified Approach to Image Processiigentice Hall PTR,
1997

Moments functions

G.Ritter, J.WilsonComputer Vision. Algorithms in Image AlgebGRC
Press, New York, 1996.



Glossary

absolute colors

alpha channel

arithmetic operation

channel of interest

CMY

CMYK

COl

color-twist matrix
conjugate

DCT

decimation

Colors specified by each pixel's coordinates in a
color space. Intel Image Processing Library
functions use images with absolute col@se
palette colors.

A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

The color channel on which an operation acts
(or processing occurs). Channel of interest
(COl) can be considered as a separate case of
region of interest (ROI).

Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow color
channels.

Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

Seechannel of interest.

A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

The conjugate of a complex numbexbi is

a- bi.

Acronym for the discrete cosine transforGee
“Discrete Cosine Transforhin Chapter 7.

A geometric transform operation that shrinks the
source image.

Glossary-1



Intel® Image Processing Library Reference Manual

DIB

dilation

dyadic operation

erosion

FFT
four-channel model

geometric transform
functions

gray scale image

HLS

HSV

hue

Device-independent bitmap, an image format
used by the library in Windows environment.

A morphological operation that sets each output
pixel to the minimum of the corresponding input
pixel and its 8 neighbors.

An operation that has two input images. It can
have other input parameters as well.

A morphological operation that sets each output
pixel to the maximum of the corresponding
input pixel and its 8 neighbors.

Acronym for the fast Fourier transfori@ee
“Fast Fourier Transforfrin Chapter 7.

A color model that uses four color channels; for
example, the RGBA color model.

Functions that perform geometric
transformations of images: resizing, rotation,
mirror, shear, and warping functions.

An image characterized by a single intensity
channel so that each intensity value corresponds
to a certain shade of gray.

Hue-lightness-saturation. A three-channel color
model that uses hue, lightness, and saturation
channels. The HLS and HSV models differ in
the way of scaling the image luminan&ee

HSV.

Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HSI
(hue-saturation-intensity) modeBeeHLS.

A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60 corresponds
to yellow, 120 to green, 180 to cyan, 240 to
blue, and 300 to magenta. Hue is undefined for
shades of gray.




Glossary

in-place operation
linear filtering
linear image transforms

luminance

LUT
LUV

MMX ™ technology

monadic operation

morphological operation
MSI

non-linear filtering

opacity channel
out-of-place operation

An operation whose output image is one of the
input imagesSeeout-of-place operation.

In this library, either neighborhood averaging
(blur) or 2D convolution operations.

In this library, the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

A measure of image intensity, as perceived by a
“standard observer”. Since human eyes are more
sensitive to green and less to red or blue,
different colors of equal physical intensity make
different contribution to luminanc&ee
ColorToGray in Chapter 9.

Acronym for lookup table (palette).

A three-channel color model designed to acieve
perceptual uniformity, that is, to make the
perceived distance between two colors
proportional to the numerical distance.

A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions implementing
the SIMD (single instruction, multiple data)
technique.

An operation that has a single input image. It
can have other input parameters as well.

An erosion, dilation, or their combinations.

Acronym for multi-spectral image. An MSI can
use any number of channels and colors.

In the Image Processing Library, minimum,
maximum, or median filtering operation.

Seealpha channel.

An operation whose output is an image other
than the input image(sgeen-place operation.

Glossary-3



Intel® Image Processing Library Reference Manual

Glossary-4

palette colors

PhotoYCC*
pixel depth

pixel-oriented ordering

plane-oriented ordering

region of interest
RGB

RGBA

ROI
saturation

scanline
standard gray palette

three-channel model

Colors specified by a palette, or lookup table.
The Image Processing Library uses palette
colors only in operations of image conversion to
and from absolute color§eeabsolute colors.

A Kodak* proprietary color encoding and image
compression schemBeeYCC.

The number of bits determining a single pixel in
the image.

Storing the image information in such an order
that the values of all color channels for each
pixel are clustered; for example, RGBRGB... .
Se€'Channel Sequentin Chapter 2.

Storing the image information so that all data of
one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

An image region on which an operation acts
(or processing occurs).

Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or
opacity) channels.

Seeregion of interest.

A quantity used for measuring the purity of
colors. The maximum saturation corresponds to
the highest degree of color purity; the minimum
(zero) saturation corresponds to shades of gray.

All image data for one row of pixels.

A complete palette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

A color model that uses three color channels; for
example, the CMY color model.




Glossary

XYZ A three-channel color model designed to
represent a wider range of colors than the RGB
model: some XYZ-representable colors would
have a negative value of R. For conversion
formulas, se&RGB2XYZ.

YCC A three-channel color model that uses one
luminance channel (Y) and two chroma
channels (usually denoted by, @nd G). The
term is sometimes used as a synonym for the
entire PhotoYCC encoding schengee

PhotoYCC.

YUV A three-channel color model frequently used in
television. For conversion formulas, see
RGB2YUV.

zoom A geometric transform function that magnifies

the source image.

Glossary-5



This page is left blank for double-sided printing

This page is left blank for double-sided printing



Index

A

a function that helps you

add a constant to pixel valugs, 5-3

add pixel values of two imagds, 5-7

allocate a quadword-aligned memory block,
4-2

allocate image dath, 4113

allocate memory for 16-bit Word8

allocate memory for 32-bit double words,

allocate memory for double floating-point
elementd, 4-30

allocate memory for floating-point
elementd, 4-29

apply a color-twist matri3

assign a new error-handling functi-G

average neighboring pixe-2

change the image orientatign, 111-9

change the image siZe, 1[L-3

compare pixel values and a constant for
equality[10-2}1 10-32, 10-p3

compare pixel values and a constant for
greater than[10-17/10-1B

compare pixel values and a constantlfss

than

compare pixels in two images for equality,
within tolerancee, [10-16
compare pixels in two images fgreater

than[10-13
compare pixels in two images ftess than
compute absolute pixel valugs, p-6
compute bitwise AND of pixel values and a

constan2

compute bitwise AND of pixel values of
two images| 5-15

compute bitwise NOT of pixel valuels, 5112

compute bitwise OR of pixel values and a
constant, 5-1

compute bitwise OR of pixel values of two
images

compute bitwise XOR of pixel values and a
constant), 5-14

compute bitwise XOR of pixel values of
two images6

compute CCS fast Fourier transform, |7-7
compute discrete cosine transfofm,|7-9
compute image momenfs, 12-5

compute moments of order 0 to[3, 1P-6
compute real fast Fourier transform, [7-4
compute the image histogram, 10-9
compute the norm of pixel valuds, 1p-2
convert a bitonal image to gray 509-7

Index-1



Intel’ Image Processing Library Reference Manual

Index-2

convert a color image to gray 309-8

convert a gray scale image to coI9-9

convert images from DIB (changing
attributes)[ 4-5(0, 4-53

convert images from DIB (preserving

attributes)| 4-47
convert images to DIH, 4-54, 4-55
convert RGB images to and from other

color modelsO
convolve an image with 2D kerngl, 6-8
convolve an image with a predefined

kernel [6-1P
convolve an image with a separable kernel,
6-1

copy entire images$, 4-15

copy image dat2

create 2D convolution kernél, §-5
create a color twist matri, 9-19
create a region of interest (Rd]), 4}21
create image head-9

create the IplTilelnfo structurg, 45
decimate the imag§, 1145, 11-6
delete 2D convolution kerndl, 6-8

delete a color twist matri2

delete a region of interest (ROI) structure,
21

delete the IpITilelnfo structur6

dilate an imagd, 8}5

divide pixel values by %[5-11

equalize the image histogram, 10+10

erode an imag@-z

exchange data of two imaggs, 435

filter the image[ 611

free memory allocated by Malloc functions,
free the image data memofy, 4}15
free the image header memdry, 4-16
get error-handling modB-4

get the error status co-3

get the value of pixel (x,y}, 4-38
handle an errof, 3}2, 3-7

initialize the image datl
magnify the image, 11}4

mirror the imagd, 11-14

multiply data in RCPack forma@-S
multiply pixel values by a color-twist

matrix,[9-21[9-23
multiply pixel values by a constant, -4

multiply pixel values by a constant and
scale the productf, §-5

multiply pixel values of two image§, 5-8

multiply pixel values of two images and
scale the productg-g

perform several erosions and dilatio 8-6,
pre-multiply pixel values by alpha values,
produce error messages for us 3-5
read convolution kernel's attributds, p-6
reduce the image bit resoluti-3
re-map images by using coordinate tables,
report an err07

resize the imagé, 11-7

rotate the imagé, 11-9

scale the image data, 4140, 441

set a color twist matriO



Index

set a region of interest (RO[), 422 Add function [5-}
set error-handling modB-4 adding a constant to pixel vaIu—3
set one pixel to a new value, 4]38 adding pixels of two imagef, §-7
set pixels to the maximum value of the AddsS function[5B

neighbors] 6-17 AddSFP function| 5J3
set pixels to the median value of the alignment

neighbors[ 6-15 .

. . image datd, 2]7

set pixels to the minimum value of the rectanaular ROI5

neighborsS _ 9 :
set the error status code, B-3 scanline[ 247 .
set the image border mode_ 4-23 Allocatelmage funct|o3
set the IpITilelnfo structure field6 AllocatelmageFP functiof, 413

shear image6 allocating memory

shift pixel bits to the leff, 5-10 for 16-bit words[4-25

shift pixel bits to the righ{, 5-41 for 32-bit double wordd, 438

shrink the imag-6 for double floating-point elements, 4430
smooth the imag@-@-? for floating-point element9

square pixel valuek, 8-6 quadword-aligned blockp, 4p7
stretch the image contrafst, 1p-7 alpha channe7 _
subtract pixel values from a const5-4 alpha pre-multlpllcat|o4

subtract pixel values of two imagds, b-8 alpha-blending S
threshold the source imade, 1p-3 alpha pre-multiplicatior, 5-34

warp images by affine transfornfis, 11117 AIphaCompOSfte funct|08
warp images by bilinear transforms, 11-20 AlphaCompositeC functiof, 5-18

warp images by perspective transf 11- ATOP operatior{, 5-32
24 IN operation[5-2p
warp images by using coordinate tab 11- OUT operation] 5-72
28 OVER operati02
zoom the imagé, 1114 PLUS operatior|, 5-32
about this manual, 1}-2 PreMultiplyAlpha function] 5-24
about this softwarﬂ-l XOR operatior|, 5-22
Abs function[5-6 AlphaComposite functi08
absolute color imagek, 2-2 AlphaCompositeC functiof, 5-18
absolute pixel valueE-G And function|5-15

Index-3



Intel” Image Processig Library Referene Manual

AndS function[5-19 bitwise OR
ApplyColorTwig function, with aconstan,t
argumert orde conventions1-7 with anothe image
arithmett operationss-1 bitwise XOR
Abs with aconstan,
Add, with anothe image
Adds [5-3 Blur function,
AddSFRB-3 brightenirg theimage[5-3
AIphaComposit
AlphaCanpositeG[5-18§ c
Multiply,
Multiglzs% call-backs2-9
MultiplyScale E CcsFftD function,
MultiplySFP, 54 CentralManert function [12-9
MultipIySScaIe changirg theimage orientation
PreMultiplyAlpha 524 changimy the image size
Square@ channéof interest@
SubtractE-g channel sequence 2-3
Subtracts5-4 CheckimageHeadéunction,
SubtractSFlE Clonemage function,
ATOP compositirg operatiom Close function, E
attributes of an image, i-4 COLl. Seechannéof interest
audiene for this manuaJ color data order E
averagilg the neighborimg pixels color models@
gray scalef2-1]
multi-spectraimage[2-2
B three or four channelg2-1]
bit deptts supportedfA-1] color spae@ conversim functions
Bitonal ToGry function [9-7 ApplyColorTwist
bitwise AND BitonalToGray[9-7
with aconstan, CoIorToGray@
with anothe image[5-15 ColorTwistFR[9-23
bitwise NOT, CreateColorTwisfo-19

Index-4



Index

DeleteColorTwist], 9-22
GrayToCoIor
HLS2RGB/[9-1B
HSV2RGB[9-1b
LUV2RGB,
ReduceBitg, 913
RGB2HLS, 9-18
RGB2HSV[9-1p
RGB2LUV,
RGB2XYZ,[9-1%
RGB2YCrCb[9-1p
RGB2YUV,[9-17
SetCoIorTwis
XYZ2RGB,[9-1%
YCC2RGB/9-1B
YCrCb2RGB[9-1p
YUV2RGB,[9-17
ColorToGray function] 918
color-twist matriced, 9-18
ColorTwistFP functi03
compare operations, 1012
Equal[10-1p
EqualFPEps, 10-16
EqualS[10-2j1
EqualSFP|, 10-32
EqualSFPEpS§, 10-23
Greate3
GreaterS, 10-17
GreaterSFR, 10-18
Less[10-14
LessS| 10-119
LessSFH, 10-20
ComputeHisto functiof, 10}9

computing the norm of pixel valugs, 12-2
ContrastStretch fu nctio-7
conventions

font,

names of constants and variab 1-6

names of functiong, 116

order of argument§, 1-7
Convert function] 4-36
ConvertFromDIB functioO
ConvertFromDIBSep functiofi, 453

converting bitonal images to gray scdle,|9-7
converting color images to gray scdle,|9-8
converting gray-scale images to c09-9

converting HLS images to RGB, 9113
converting HSV images to RGB, 9112
converting images from DIB (changing

attributes)| 4-50, 4-33
converting images from DIB (preserving

attributes)[ 4-4f7
converting images to DI5
converting LUV images to RGB, 9-14
converting RGB images to HL§, 9113
converting RGB images to HSZ
converting RGB images to LUY, 9-.4
converting RGB images to XYZ, 9-15
converting RGB images to YCrCp, 9116
converting RGB images to YU7
converting XYZ images to RGB, 9-115
converting YCC images to RGlS
converting YCrCh images to RGE%
converting YUV images to RGB, 9-[7
ConvertToDIB function] 4-54
ConvertToDIBSep functiof, 4-55

Index-5



Intel’ Image Processing Library Reference Manual

Index-6

convolution[6-B

Convolve2D functior@B
Convolve2DFP functior, 6}8
ConvolveSep2D functiof, 6-11
ConvolveSep2DFP functio@ll
coordinate systems, 4-4

Copy function| 4-3p

copying entire imagek, 4-15
copying the image datg, 4-32
CreateColorTwist functiorf, 9-19
CreateConvKernel functiofi, §-5
CreateConvKernelChar functidn, b-5
CreateConvKernelFP functioB-S
CreatelmageHeader functidn, 4-9
CreatelmageJaehne functifn, 4-18
CreateROI functiol
CreateTilelnfo functior], 4-25
creating image$, 4L, 4-9
cross-correlatior], 12-12

D

darkening the imagg, §-3

data architectur@-l

data exchangé, 4-2

data exchange functiorfs, 4131
Convert[4-3b
Copy/[4-32
Exchangd, 4-35
GetPixel[4-3B
NoiseGaussianIn4
NoiseGaussianInitFp, 4-4

Noiselmage], 4-42

NoiseUniforminit[4-48
NoiseUniforminitFp[ 4-4B
PutPixel[4-3B
Scale[ 4-4p
ScaleFP}, 4-41
Set
SetFP[4-31
data ordering, 2]3

data ranges in HLS and HSV mod-ll

data typed, 2}2

DCT. Seediscrete cosine transform
DCT2D function[7-9

Deallocate functio6
Deallocatelmage functiop, 4415
Decimate functior], 115
DecimateBlur functioG
DecimateFit macrd, 11}8
decimating the imag§, 11-7
DeleteColorTwist functior, 9-22
DeleteConvKernel functio@-S
DeleteConvKernelFP functiop, -8
DeleteROI functior], 4-31
DeleteTilelnfo function6
device-independent bitmdp, §-3
DIB. Seedevice-independent bitmap
DIB palette image$, 22

Dilate function

dilation of an imagd, 815

discrete cosine transforfn, 1-8
dividing pixel values by %
dMalloc function

dyadic operationg, 5-1



Index

E

Equal function{ 10-1/5
EqualFPEps functiof, 10-1.6
equalizing the image histogralo
EqualS function, 10-21
EqualSFP functior}, 10-22
EqualSFPEps functiop, 1023
Erode function
erosion of an imagé, 8-2
ErrModeLeaf error modé, 3-4
ErrModeParent error mode, 8-5
ErrModeSilent error modg, 3-5
error checks, 3]1
Error function]3-p
error handlingl
example] 3-13
status code§, 3-10
user-defined error handl15
error handling macrof, 3-9
error processing modes
IPL_ErrModeLeaf] 3}4
IPL_ErrModeParenS
IPL_ErrModeSilent] 35
error-handling functiong, 3}-2
Error,[3-2
ErrorStr| 3-5
GetErrMode]| 3-4
GetErrStatug, 313
GuiBoxReport
NullDevReport| 3F

RedirectError, 316
SetErrMode4

SetErrStatug, 313
StdErrRepor7

ErrorStr function| 35

Exchange functiorf, 4-35

execution architecturg-S
in-place and out-of-place operati02-8
overflow and underflow], 28
saturation| 238

F

fast Fourier and discrete cosine transforms
Ccstt2D
DCT2D,[7-9
MpyRCPack2D| 718
RealFft2D[7-4

fast Fourier transforl

FFT. Seefast Fourier transform

filling image’s pixels with a valud, 4-38

filtering functions
Blur,
Convolve2D[ 6-B
Convolve2DFP[ 618
ConvolveSele
ConvolveSep2DFPR, 6-11
CreateConvKernel, 6}5
CreateConvKernelChdr, §-5
CreateCoanerneIFFE-S
DeleteConvKerne|, 6}8
DeleteConvKernelFR, 6-8
FixedFilter[6-1P
GetConvKernel 636
GetConvKernelChaf, 616

Index-7



Intel’ Image Processing Library Reference Manual

Index-8

GetConvKernelFH, 6]6

MaxFiIter,

MedianFilter[ 6-1p

MinFilter,[6-18
FixedFilter function2
font conventiond, 115

Free function| 4-30

free memory allocated by Malloc functfons| 4-
30

function descriptiond, 1}4
function name conventiong, 1-6

G

geometric transform functions
Decimate| 115
DecimateBlur} 1146
GetAffineBound[ 11-18
GetAffineQuad| 11-18
GetAffineTransform|_11-19
GetBilinearBound, 11-32
GetBilinearQuad, 11-22
GetBilinearTransform), 11-23
GetPerspectiveBouZG
GetPerspectiveQuald, 11]26
GetPerspectiveTransforfn, 11127
GetRotateShiff, 11-11
Mirror, [11-14
Remap} 11-28
Resize| 11-
Rotate
Shear| 11-16
WarpAffine,[11-17

WarpBilinear[ 11-2p
WarpBiIinearQ
WarpPerspectivg, 11-p4
WarpPerspectiveQ, 11-P4
Zoom,|11-4
geometric transform macros
DecimateFit] 118
ResizeFit| 1148
RotateCentef, 11-13
ZoomFit,|11-8
GetAffineBound functior], 11-18
GetAffineQuad functior], 11-18
GetAffineTransform functio 9
GetBilinearBound function, 11-22
GetBilinearQuad function, 11-22
GetBilinearTransform functi03
GetCentralMoment functiofi, 13-7
GetConvKernel functior, 6}6
GetConvKernelChar functiof, §-6
GetConvKernelFP functio@-G
GetErrMode functior], 3}4
GetErrStatus functiof, 3-3
GetLibVersion functionl
GetNormalizedCentralMoment functidn, 1p-8
GetNormalizedSpatialMoment functign, 12-7
GetPerspectiveBound functign, 11}26
GetPerspectiveQuad functi26
GetPerspectiveTransform functipn, 11-27
GetPixel function] 4-38
GetRotateShift functiop, 11-11
GetSpatialMoment functio-6
gray-scale image§, 3-1
GrayToColor function, 919



Index

Greate function,
Greate$ function,

GreaterSP function,
GuiBoxRepor function,

H

handlirg overflow and underflow @

hardwae and softwae requirementdl-1

HistoEqualiz function,

histogran and thresholdingy functions
ComputeHistd10-9
ContrastStretc;
HistoEqualizefL0-14
Threshold[10-2

histogran of an image[10-9

histogran operation

HLS2RGB function,

HSV2RGB function,

image attributes4-4 BT

image compositing
alpha pre-multiplicatior;
AlphaCanposite function,
AlphaCampositeC function,
ATOP operation5-27
IN operation[5-23
OUT operation[5-23
OVER operatiom
PLUS operatiom
PreMultiplyAlpha function,

XOR operation[5-23

image creatio functions@
Allocatelmage/4-13
AllocatelmageFH4-13
ChecklmageHead
Clonelmage,
CreatelmageHeadé-g
CreatelmageJaehje18
CreateRO,I
CreateTilelnfo[4-25
Deallocate[4-16]
Deallocatelmagé4-15
DeleteROJ[4-21
DeleteTileInfq[4-26
SetBorderModg4-23
SetRO|
SetTilelnfq

image dimensiong2-7

image filtering functions

image format, @

image headeyf4-4

image histogram[10-9

image moments

image noms, [12-2

Image Processig Library functionality
2D convolution -3
alpha-blendin@
arithmett operationsp-1
color spae conversiom@
compate functions[10-1
dalaexchange@
DIB envirormert functions[4-45
discree cosire transform

Index-9



Intel’ Image Processing Library Reference Manual

error handling] 311

fast Fourier transfornﬂ-l

filtering functions[6-IL

geometric transform functiorfs, 11-1
histogram and thresholding functioO-l

IpITilelnfo structure[4-B
iMalloc function,

IN compositing operatior, 5-22

in-place operation§, 2-8
interpolation algorithml

image creatior], 4]1 IPL_ErrModeLeaf] 34
image statistic§, 12}1 IPL_ErrModeParenf, 3|5
image tiling[2-8[ 418 IPL_ErrModeSilent] 315
interpolation algorithml ipIAbs,

logical operationg, 511 iplAdd,

memory allocation|, 4-37 iplAdds,[5-3

moments and normg, 12-1 iplAddSFP[5-B

morphological operationE-l
supported image attributes and modes) A-1

ipIAIIocateImage3
iplAllocatelmageFH, 4-13

user-defined function§, 13-1 iplAlphaCompositd, 5-18
version of the library, 1441 ipIAIphaCompositeS

image row datd, 2}7 iplAnd,

image size] 2]7 iplAndS,[5-1%

image structure ipIAppIyCoIorTwist,
borders ipIBitonaIToGray
channel sequende, -3 iplBlur,
color models[ 21 iplCcsFft2D[7-7
coordinate systemQ-A ipICentraIMomen
data architecturg, 21 iplCheckimageHeadelr, 417
data ordering, 2}3 iplClonelmage], 4-15
data typed, 2]2 iplClose[8-F
header attributeg-4 ipICoIorToGray
image sizel, 27 iplColorTwistFP[9-2B
regions of interes4 iplComputeHistol, 10{9
tile size,[2-9 iplContrastStretcH, 1017
tiling, @ ipIConvert

image tiling[2-B[4-B iplConvertFromDIB[ 4-50

call-backs] 2-p iplConvertFromDIBSe], 4-53

Index-10



Index

iplConvertToDIB,[4-54
iplConvertToDIBSep, 4-35
iplConvolve2D[6-8
iplConvolve2DFP| 618
ipIConvoIveSele
iplConvolveSep2DFH, 6-11
iplCopy,[4-32
iplCreateColorTwis{, 9-19
ipICreateCoanerneES
ipICreateConvKernelChdr, §-5
iplCreateConvKernelFR, -5
iplCreatelmageHeaddr, 4-9
ipICreateImageJaehlB
iplCreateROI[4-2L
iplCreateTilelnfo[ 4-26
ipIDCT2D,[7-9
iplDeallocate] 4-1p
ipDeallocatelmagd, 4-15
ipIDecimate[ 115
ipIDecimateBIur
ipIDecimateFit[ 1118
iplDeleteColorTwist, 9-22
ipIDeIeteCoanerne@S
ipIDeleteConvKernelFH, 6}8
iplDeleteROI[4-21L
iplDeleteTileInfo[4-2b
ipIDilate, [8-5%
ipldMalloc,[4-30

iplEqual [10-15
iplEqualFPEp4, 10-16
ipIEquaIS
iplEqualSFP| 10-22
iplEqualSFPEp$, 10-23

iplErode[8-P

ipIError,

iplErrorStr,| 3-5
iplExchange] 4-35
iplFixedFilter[6-12
iplFree[4-3D
iplGetAffineBound[11-1B
iplGetAffineQuad| 11-118
iplGetAffineTransform| 11-19

iplGetBilinearBound, 11-32
iplGetBilinearQuad], 11-72
iplGetBilinearTransforn{, 11-23
ipIGetCentraIMomen7
iplGetConvKernel, 636
iplGetConvKernelChaf, 6}6
ipIGetCoanerneIFPEG
iplGetErrMode[ 34
iplGetErrStatud, 313
ipIGetLibVersion
ipIGetNormaIizedCentraIMome-8
iplGetNormalizedSpatialMomerft, 13-7
iplGetPerspectiveBounf, 11126
iplGetPerspectiveQuad, 11126
iplGetPerspectiveTransforin, 11]27
iplGetPixel [4-3B

iplGetRotateShi 1
ipIGetSpatiaIMomen6
iplGrayToColor[9-p

iplGreater[ 10-13

iplGreaterS| 10-17
iplGreaterSFR, 10-18
iplGuiBoxReport[ 3
iplHistoEqualize} 10-10

Index-11



Intel’ Image Processing Library Reference Manual

ipIHLS2RGB,[9-13
ipIHSV2RGB,[9-12
Iplimage structurd, 4}7
ipliMalloc,
IplLastStatus variabl5
iplLess[10-1}4

iplLessS[ 10-19
iplLessSFH, 10-20
ipILShiftS,[5-10
iplLUV2RGB,[9-14
ipIMalloc,[4-27
ipIMaxFilter,[6-17
ipIMedianFiIter
ipIMinFilter,
ipIMinMaxFP[12-14
ipIMirror,
ipIMoments[12-p
IpIMomentState structurg, 12-5
ipIMpyRCPack2D[ 78
ipIMultiply,
ipIMultiplyS, 5-4
ipIMultiplyScale,[5-9
ipIMultiplySFP,[5-3
ipIMultiplySScale[5-b
ipINoiseGaussianlnit, 4-44
ipINoiseGaussianInitFp, 4-44
ipINoiselmage), 4-42
ipINoiseUniforminit,[4-43
ipINoiseUniforminitFp[4-4B
ipINorm, [12-2

ipINormalizedCentralMome 1
ipINormalizedSpatialMomenj, 12-1.0

ipINormCrossCori, 12-13

Index-12

ipINot,
ipINuIIDevReport
iplopen[8-b

iplOr,
ipIOrS,
iplPreMultiplyAlpha,[5-2}
iplPutPixel[4-3B
ipIRealFft2D[7-4
ipIRedirectError
iplReduceBits| 913
iplRemap| 11-2B
ipIResize[ 117
ipIResizeFit
ipIRGB2HLS[9-13
ipIRGB2HSV[9-12
ipIRGB2LUV,
ipIRGB2XYZ,
ipIRGB2YCrCb[9-1p
ipIRGB2YUV,
ipIRotate
iplRotateCente 3
ipIRShiftS [5-11
ipIScaIe
iplScaleFP| 4-41
iplSet,[4-31
iplSetBorderModd, 4-23
ipISetCoIorTWist
iplSetErrMode[ 34
iplSetErrStatud, 313
iplSetFP[4-3L
iplSetROI[4-2p
iplSetTileInfo[4-26
iplShear[11-16



Index

iplsMalloc,[4-29
ipISpatiaIMomentQ
ipISquare| 56
ipIStdErrReport, 337
ipISubtract
iplSubtracts| 54
iplSubtractSFH, 514
iplThreshold[ 10-p
IpITilelnfo structure
iplTranslateDIB[4-47
ipluserFunc| 132
iplUserFuncFH, 13}3
iplUserFuncPixel, 1314
iplUserProces$, 1315
iplUserProcessFP, 13-7
ipIUserProcessPix-S
iplWarpAffine,[11-17
iplWarpBilinear[11-2p
iplwarpBilinearQ[ 11-20
iplWarpPerspectivé, 11-p4
iplWarpPerspectiveQ, 11-p4
iplwMalloc,

iplXor,

iplXorS,[5-14
ipIXYZ2RGB, [9-1§
iplYCC2RGB[9-18
iplYCrCb2RGB/[9-1b
iplYUV2RGB, [9-17
iplZoom,[11-4
iplZoomFit[11-$

L

Less function, 10-1/4
LessS functior], 10-19
LessSFP function, 10-20
linear filters,[6-2
logical operationg, 511

And,

AndS,[5-1}

LShifts,[5-10

Not,[5-12

Or,

OrS[5-18

RShifts[5-11

Xor,

XorS,
lookup table Seepalette color images
lookup table operationf, 14-5
LShiftS function| 5-10
LUV2RGB function,|9-14

M

magnifying the imag-?
Malloc function[4-2f
manual organizatiof, 1-2
mask
MaxFilter function| 6-1F
maximum permissible valuk, 2-8
maximum pixel valug, 12-14
MedianFilter functionS
memory allocation function§, 4-2, 4127
dMalloc,[4-30
Free

Index-13



Intel’ Image Processing Library Reference Manual

iMalloc,
Malloc,
sMalloc,[4-29
wMalloc,[4-28
MinFilter function,
minimum permissible valug, 3-8
minimum pixel value], 12-14
MinMaxFP function| 12-1}4
Mirror function,|11-14
mirroring the imagd, 11-14
moments], 125
moments and norms
CentraIMomen9
GetCentralMomenf, 12}7
GetNormalizedCentralMomerfit, 12-8
GetNormaIizedSpatiaIMome-7
GetSpatialMomenf, 12}6
MinMaxFP ) 12-14
Moments[12-p
Norm,[12-2
NormalizedCentralMoment, 12-11
NormalizedSpatialMomer(t, 12-10
SpatialMoment, 1249
Moments function|, 126
monadic operationg, 5-1
morphological operations
Close
Dilate,[8-5
Erode[8-P
Open[8-b
MpyRCPack2D functi08
MSI. Seemulti-spectral image
multi-image operation5

Index-14

Multiply function,|5-§
multiplying and scaling pixel values
by a constanf, 5}5
in two input images, 519
multiplying pixel values
by a color-twist matrix, 9-21, 9-23
by a constanf, 5}4
by a negative power of £, 5-.1
in two input image8
squares of pixel valuef, §-6
MultiplyS function[5-4
MultiplyScale function[ 519
MultiplySFP function
MultiplySScale function] 5J5
multi-spectral imagd, 22

N

naming convention§, 1-6
NoiseGaussianlnit functio4
NoiseGaussianinitFp functio4
Noiselmage functio 2
NoiseUniforminit function| 4-43
NoiseUniforminitFp function3

Norm function[ 12

normalized cross-correlatian, 1212
NormalizedCentralMoment functioh, 1211
NormalizedSpatialMoment functign, 12410
NormCrossCorr function, 12-1.3

Not function,5-1P

notational conventionﬂ—S
NullDevReport function], 3}7

numerical exception§, 3-1



Index

@)

online versim of this manual

opacity channel. See dpha channel

Open function,

openirg and smoothing thei mage
operation modes of library functions A1l
Or function [5-15

orS function,

OUT compositirg operatior,i
out-of-pla@ operations@

OVER compositirg operatior,l

P

palete color images@
parallelism

pixel depth

pixel values settirg and retrieving
PLUS compositirg operation|5-22
PreMultiplyAlpha function,
prodwcing error messages for users, @

PutPixé function

R

RCPackD format,

real-comple packel format, @
RealFftD function,
rectangularegion of interest
RedirectErro function, @
ReduceBis function, 9-3

reducirg the image bit resolution@

region of interest[2-4

channel2-4

mak image,

rectangula2-4
Remap function[11-2§
reportirg an error, @
Resiz function
ResizeRi macro[11-§
retun valuesfL-4
RGB2HLS function [9-13
RGB2HSY function [9-12
RGB2LUV function
RGB2XYZ function
RGB2YCrh function,
RGB2YUV function,
ROI. Seeregion of interest
Rotat function,
RotateCentemacrq[11-13

rotating theimage

arourd an arbitray center|11-11

arourd the origin,
RShiftS function,

S

saturation2-§

Scak function [4-44

ScalefP function
scanline. Seeimage row data
scanlire alignmentR-7

Sd function,
SetBorderMoé function,
SetColorTwis function,
SetErrMod function, B-4

Index-15



Intel” Image Processig Library Referene Manual

SetErrStatafunction 3-3
SetFPfunction,
SetRQ function,
SetTilelnb function
Shea function,
sheariny theimage[11-16
shifting pixel bits

to the left,[5-10

to theright,
shrinking the image, [11-5[11-
sigred data, [2-2
SIMD instructionsfi-1
sMalloc function,
smoothing the image|[8-7
SpatialMomenfunction,
Squae function,
squars of pixel values
status codes,
StdErrReparfunction,
stretchirg theimage contra
Subtrat function 5-§
subtractimg pixel values

from aconstan@

two input images[5-§
Subtracs function 5-4
SubtractSP function [5-4
supportd image attributes and modes

T

Threshod function,
thresholdiny the soure image [10-3

tiling, 2-8 [4-8

Index-16

call-backsp-9
CreateTilelnb function,
DeleteTilelnb function,
IplTileInfo structuref4-§
SetTilelnf function,
TranslateDB function [4-4%
two-dimensionaconvolution

U

user-defind coordinaé transfomations

user-defind errar handler

user-defind functions
UserFurc type,
UserFuncP type
UserFuncPixktype,
UserProcesi3-§
UserProcesskR 3-7

UserProcessPixgl3-§

V
versia of the Iibrary,

W

WarpAffine function[11-17
WarpBilinea function,
WarpBilineaQ function,
warping theimage
WarpPerspectirfunction[11-24
WarpPerspectiv@ function,
Windows DIB functions [4-3,
ConvertFromDIB,



Index

ConvertFromDIBSep, 4-53
ConvertToDIB
ConvertToDIBSe, 4-35
TranslateDIB[4-47
wMalloc function,

X
XOR compositing operatiof, 5-p2
Xor function,[5-16

XorS function[5-1}4
XYZ2RGB function[9-15

Y

YCC2RGB function| 9-18
YCrCb2RGB function| 9-116

YUV2RGB function][9-1}

z

Zoom function| 11-/

ZoomFit macro| 1178
zooming the imagd, 114, 11-7

Index-17



	Intel® Image Processing Library Reference Manual
	How to Use This Manual
	Revision History
	Legal Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience forThis Manual
	Online Version
	Sources of Related Information

	Notational Conventions
	Font Conventions
	Naming Conventions
	X-Y Argument Order Convention


	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions of Interest
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	ImageTiling
	Tile Size
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling


	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus, SetErrStatus
	GetErrMode, SetErrMode
	ErrorStr
	RedirectError
	NullDevReport, StdErrReport, GuiBoxReport

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	Tiling Fields in the IplImage Structure
	IplTileInfo Structure
	Creating Images
	CreateImageHeader
	AllocateImage, AllocateImageFP
	DeallocateImage
	CloneImage
	Deallocate
	CheckImageHeader
	CreateImageJaehne

	Setting Regions of Interest
	CreateROI
	DeleteROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	Malloc
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set, SetFp
	Copy
	Exchange
	Convert
	PutPixel, GetPixel
	Scale
	ScaleFP
	NoiseImage
	NoiseUniformInit, NoiseUniformInitFp
	NoiseGaussianInit, NoiseGaussianInitFp

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertFromDIBSep
	ConvertToDIB
	ConvertToDIBSep


	Chapter 5 Image Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS, AddSFP
	SubtractS, SubtractSFP
	MultiplyS, MultiplySFP
	MultiplySScale
	Square
	Abs

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	Using Pre-multiplied Alpha Values
	AlphaComposite, AlphaCompositeC
	PreMultiplyAlpha


	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel, CreateConvKernelChar, CreateConvKernelFP
	GetConvKernel, GetConvKernelChar, GetConvKernelFP
	DeleteConvKernel, DeleteConvKernelFP
	Convolve2D, Convolve2DFP
	ConvolveSep2D, ConvolveSep2DFP
	Fixed Filter

	Non-linear Filters
	MedianFilter
	ColorMedianFilter
	MaxFilter
	MinFilter


	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	Real-Complex Packed (RCPack2D) Format
	RealFft2D
	CcsFft2D
	MpyRCPack2D

	Discrete Cosine Transform
	DCT2D


	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	Data ranges in the HLS and HSV Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB
	RGB2LUV
	LUV2RGB
	RGB2XYZ
	XYZ2RGB
	RGB2YCrCb
	YCrCb2RGB
	RGB2YUV
	YUV2RGB
	YCC2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist
	ColorTwistFP


	Chapter 10 Histogram, Threshold, and Compare Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	The IplLUT Structure
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Comparing Images
	Greater
	Less
	Equal
	EqualFPEps
	GreaterS
	GreaterSFP
	LessS
	LessSFP
	EqualS
	EqualSFP
	EqualSFPEps


	Chapter 11 Geometric Transforms
	Changing the Image Size
	Zoom
	Decimate
	DecimateBlur
	Resize
	ZoomFit, DecimateFit, ResizeFit

	Changing the Image Orientation
	Rotate
	GetRotateShift
	RotateCenter
	Mirror

	Warping
	Shear
	WarpAffine
	GetAffineBound
	GetAffineQuad
	GetAffineTransform
	WarpBilinear, WarpBilinearQ
	GetBilinearBound
	GetBilinearQuad
	GetBilinearTransform
	WarpPerspective, WarpPerspectiveQ
	GetPerspectiveBound
	GetPerspectiveQuad
	GetPerspectiveTransform

	Arbitrary Transforms
	Remap


	Chapter 12 Image Statistics Functions
	Image Norms
	Norm

	Image Moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedSpatialMoment
	GetNormalizedCentralMoment
	SpatialMoment
	CentralMoment
	NormalizedSpatialMoment
	NormalizedCentralMoment

	Cross-Correlation
	NormCrossCorr

	Minimum and Maximum
	MinMaxFP


	Chapter 13 User Defined Functions
	UserFunc
	UserFuncFP
	UserFuncPixel
	UserProcess
	UserProcessFP
	UserProcessPixel

	Chapter 14 Library Version
	GetLibVersion

	Appendix A Supported Image Attributes and Operation Modes
	Appendix B Interpolation in GeometricTransform Functions
	Overview of Interpolation Modes
	Mathematical Notation
	Nearest Neighbor Interpolation
	Linear Interpolation
	Cubic Interpolation
	Super-Sampling

	Bibliography
	Glossary
	Index

