
Hawk application

The Hawk application has been created for fast demo creation and for research purpose. It represents to
be a C interpreter (compatible with ISO C), with built in functions of OpenCV, IPL and interface functions
to Win32.

Getting started

print a message
Type
printf(“Hello Y%dK”, 2);
in the editor (right pane), save the document and press Run button (or F5). In the trace window (left pane)
you will see the printed message.
Note: it is not necessary to include stdio.h. The standard headers are included automatically.

Simple windows functionality. User input.
In the editor window type:
named_window(“Y2K window”, 0);
wait_key(0);
destroy_window(“Y2K window”);
Save the document. Run the script by pressing Run button or F5. A window with the specified name should
be created. Make this window active and press any key. The window should be destroyed.

Work with IPL.
IPLIMAGE image;
image = load_iplimage(“Y2K.bmp”);
named_window(“Y2K window”, 0);
show_iplimage(“Y2K window”, image);
wait_key(0);

Hints
• Press the right mouse button in editor window to display the menu of modules. Select the module

to display the list of available functions.
• Move the cursor to the function name to get a syntax hint on a status bar.
• Press the “Watch” button on the toolbar to quick watch variable values during script execution

(use wait_key function to pause the execution).

Hawk reference

The application structure
The Hawk consists of the following parts and modules:
� common plugins structure
� OpenCV that can be used in scripting
� IPL that can be used in scripting

� The visualization library that can be used in scripting. The library represents a set of functions that
make easy the use of Win32. It includes: creation of a window, showing a bitmap in a window, waiting
for a keystroke.

� Video library
� The C interpreter CVEiCL. It is created on the basis of EiC, a C interpreter that is distributed under

ARTISTIC licence and can be downloaded from www.anarchos.com/eic. In addition to standard
runtime library, CVEiCL contains built in libraries OpenCV, IPL and HighGUI.

� The Hawk application itself that brings all the pieces together.

Common plugins structure
Hawk plugin is a dll module that is placed in the plugins directory and implements Hawk plugin interface,
which is described below:

void SetErrLevel(errlevel_t);
 errlevel_t declared in hawkwrap.h takes on values safe and unsafe. This function should set
the safe mode, in which a long jump should be performed in case of fatal errors (see below). Is
implemented in eicdllwrap.h.

void SetErrMark(jmp_buf*);
 This function should set the mark for the long jump that should be performed in safe mode in
case of fatal errors. Is implemented in eicdllwrap.h. The code in long jump should be a pointer to
the dynamically allocated structure wrapexcept_t, declared in hawkwrap.h.
void SetEiCStack(AR_t**);

 This function is intended to tune the pointer to the interpreter stack. It is implemented in
eicdllwrap.h.
void SetEiCCallback(void(*)(void*));
 This function is intended to tune the pointer to the EiC method that implements interpreters
callbacks . It is implemented in eicdllwrap.h.

void GetFunctions(char***, val_t (***)(void), int*);
 This function returnes pointers to the array of names and addresses of wrappers that are
implemented in the module. Below is the description of two plugins, OpenCV and IPL.

OpenCV & IPL
The basic data unit for OpenCV and IPL is a pointer to IplImage structure, IPLIMAGE:
 typedef iplImage* IPLIMAGE;
See Getting started for the examples of using IPL.
All IPL functions are accessible in the scripting environment.

Visualization
The visualization library is a set of interface functions to Win32. They enable to create a window, to show
an image in a window without writing callback functions and to manage messages.

int named_window(const char* name, UINT flags);
int destroy_window(const char* name);
IPLIMAGE load_iplimage(const char* filename);
int save_iplimage(const char* filename, IPLIMAGE image);
int show_iplimage(const char* name, IPLIMAGE image);
int wait_key(const char* name);
int create_toolbar(const char* name);
int create_slider(const char* slider_name, const char* window_name, int* val, int count, void
(*on_notify)(int));

Window styles
Error codes

named_window:
int named_window(const char* name, UINT flags);
Creates a simple window with the specified name. If the window with this name already exists, the function
does nothing and reports an error.
Parameters:

name window name. In HighGUI, every window is identified and referenced to by its name.
flags HighGUI styles that should be set. See HighGUI window styles for a list of possible

values.
Return value:

0 if the function succeeded, nonzero value in case of a failure.

destroy_window:
int destroy_window(const char* name);
Destroys a HighGUI window with the specified name. If the window with this name is not found, the
function reports an error.
Parameters:

name the name of the window to be destroyed.
Return value:

0 if the function succeeded, nonzero value in case of a failure.

load_iplimage:
IPLIMAGE load_iplimage(const char* filename);
Loads a bitmap from a Windows bitmap file and stores it in an IplImage structure.
Parameters:

filename the name of the file.
Return value:

a valid IPLIMAGE pointer if succeeded, NULL in case of a failure.

save_iplimage:
int save_iplimage (const char* filename, IPLIMAGE image);
Saves an IplImage to a Windows bitmap file.
Parameters:

filename the name of the file. If the filename contains no path, the file is attempted to be
written first to bitmaps directory in the folder that contains Hawk.exe and then to ..\..\bitmaps
directory (the last option is added for developers with Hawk source codes).
image the pointer to IplImage structure.

Return value:
HG_OK if succeeded or error code.

show_iplimage:
int show_iplimage(const char* name, IPLIMAGE image);
Displays the bitmap in the window. Also resizes the window to fit the bitmap.
Parameters:

name the name of the window
image the pointer to IplImage.

Return value:
0 if succeeded, nonzero in case of a failure.

wait_key:
int wait_key(const char* name);
Waits for a key press in a window with the specified name. If name is NULL, then waits for a key press in
any of HighGUI windows.
Parameters:

name should be a name of a HighGUI window or NULL
Return value:

The key code or 0 if the window that waits for the key press is being destroyed.

create_toolbar:
int create_toolbar(const char* name);
Creates an empty toolbar in the window with the specified name.
Parameters:

name should be a name of a HighGUI window.
Return value:

HG_OK if succeeded, error code otherwise.

create_slider:
int create_slider(const char* slider_name, const char* window_name, int* val, int count, void
(*on_notify)(int));
Creates a trackbar and places it on the toolbar. If the toolbar is not created up to the moment with the
create_toolbar function, it is created automatically before trackbar creation.
Parameters:

name should be a name of a HighGUI window
val the address of the variable that will receive the trackbar position update. If a new
trackbar is created then its position is initialized with the *val value; if the trackbar with the
specified name already exists then, on the contrary, the *val receives the position. Can be NULL if
the trackbar position is not needed.
count ticks count of the slider; minimum and maximum positions are 0 and count
correspondingly
void (*on_notify)(int) notify function that will be called on each slider position change. Can
be NULL if callbacks are not needed

Return value:
HG_OK if succeeded, error code otherwise.

HighGUI window styles
Here is the list of HighGUI window styles:
• HG_AUTOSIZE: The window with this style cannot be resized with the UI; it self adjusts the size to

the image attached to it.

HighGUI error codes
• HG_OK: No comments
• HG_BADNAME: Is returned if the argument is char* and the string it points to is considered to be

wrong by any means.
• HG_INITFAILED: Initialization of HighGUI library has failed. The most probable causes are that

either the HighGUI window class registration had failed or the CvlGrFmts.dll library loading had
failed.

• HG_WCFAILED: Returned if the window could not be created.
• HG_NULLPTR: Returned if the input pointer value is null and it should not.

Video library
play_avi:
int play_avi(char* filename, char* windowname, void (*callback)(IPLIMAGE));
Plays an avi file calling a script function on each frame. Returns when the video ends or if the user destroys
the render window. The file path can be absolute. If it is relative then the file is searched in the windows
system directories, then in the PATH, then in the Video directory on the same level as the Hawk.exe and
finally in the Video directory two levels higher than Hawk.exe (the last is intended for work with sources in
Microsoft Developer Studio).
Parameters:

filename the name of an avi file
windowname the name of the HighGUI render window where to render the video. If the

window does not exist then it is created before and deleted after rendering.
callback the function that will be called on each frame before rendering. Can be zero.

Return value:
zero if succeeded, nonzero in case of a failure.

play_ds:
int play_ds(void (*callback)(IPLIMAGE));
Starts DirectShow. Unlike running DirectShow with “PlayDS” button (see above) this method allows to
start video processing after some initialization. Stop video with “Stop DS” button.
Parameters:

callback the function that will be called on each frame before rendering. Can be zero.
Return value:

zero if succeeded, nonzero in case of a failure.

CVEiCL
The CVEiCL module is based on the ISO C interpreter EiC. It’s source codes were slightly modified to suit
the needs of Hawk and thus renamed to CVEiCL. The OpenCV, IPL HighGUI and video modules are
attached to CVEiCL in order to enable the calls to Win32 and image processing functions. The script
should be written as a standard body of main() function. The script should be started with variables
declarations. As usual, declarations after the first statement are not possible. The script is checked for errors
before execution starts, so if it does not fit the ISO C grammar, the interpreter generates an error text
message and does not execute the script.

Hawk
Basically, there are two ways to run scripts. The simple one is to press the Run button or F5 to simple
execute it. Also you can press RunDS button to start DirectShow pipeline.

Simple execution
Hawk executes *.c files by interpreting a preprocessor command
#include “filename.c”
So the user should save the script to the file before executing it.
If you work with simple script execution you might need to load source images from files. You could do
that with HighGUI method load_iplimage. It will search for the image first in the current directory, then in
the bitmaps directory, which is placed in the same folder as Hawk.exe1.

DirectShow execution
Every frame from you source will be processed with the script before being rendered. The frame could be
referred to as ds_image declared as:
IPLIMAGE ds_image;
But it is not possible to apply the changes in your script during DirectShow session. The script is compiled
to interpreter byte-code only once, before DirectShow starts. To change the script it is necessary to stop
DirectShow.

Troubleshooting
• The execution of the script is aborted with the following message: “Signal with code 2 has been

raised by EiC in filename, linenumber. Aborting script execution.”
� The script contains fatal errors like reading from null pointers. Check the variables that are

referenced in the reported line.
� Make sure that the function that is called from the reported line does exist.
� Pay attention to the message following the abort message box (if any).

• The button that runs DirectShow is disabled:
� Make sure that the DirectX Media 6.0 or compatible is installed correctly on your computer.
� Make sure that no other application uses DirectShow.
� Register the DirectShow filter ProxyTrans.ax with the following command:

 regsvr32 ProxyTrans.ax
• The execution of the script is aborted and the script persistently fails afterwards
� Restart the application

1 If the file with the specified name is not found in these folders, the application attempts to load it from
..\..\bitmaps directory, which is appropriate if the user works with source codes.

	Hawk application
	Getting started
	print a message
	Simple windows functionality. User input.
	Work with IPL.
	Hints

	Hawk reference
	The application structure
	Common plugins structure
	OpenCV & IPL
	Visualization
	HighGUI window styles
	HighGUI error codes

	Video library
	CVEiCL
	Hawk
	Simple execution
	DirectShow execution

	Troubleshooting

