e4b6251a298a3bedf93d08159ad6abda2d822ba8
[qemu] / qemu / target-i386 / exec.h
1 /*
2  *  i386 execution defines 
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 #include "config.h"
21 #include "dyngen-exec.h"
22
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
29
30 #include "cpu-defs.h"
31
32 /* at least 4 register variables are defined */
33 register struct CPUX86State *env asm(AREG0);
34
35 #if TARGET_LONG_BITS > HOST_LONG_BITS
36
37 /* no registers can be used */
38 #define T0 (env->t0)
39 #define T1 (env->t1)
40 #define T2 (env->t2)
41
42 #else
43
44 /* XXX: use unsigned long instead of target_ulong - better code will
45    be generated for 64 bit CPUs */
46 register target_ulong T0 asm(AREG1);
47 register target_ulong T1 asm(AREG2);
48 register target_ulong T2 asm(AREG3);
49
50 /* if more registers are available, we define some registers too */
51 #ifdef AREG4
52 register target_ulong EAX asm(AREG4);
53 #define reg_EAX
54 #endif
55
56 #ifdef AREG5
57 register target_ulong ESP asm(AREG5);
58 #define reg_ESP
59 #endif
60
61 #ifdef AREG6
62 register target_ulong EBP asm(AREG6);
63 #define reg_EBP
64 #endif
65
66 #ifdef AREG7
67 register target_ulong ECX asm(AREG7);
68 #define reg_ECX
69 #endif
70
71 #ifdef AREG8
72 register target_ulong EDX asm(AREG8);
73 #define reg_EDX
74 #endif
75
76 #ifdef AREG9
77 register target_ulong EBX asm(AREG9);
78 #define reg_EBX
79 #endif
80
81 #ifdef AREG10
82 register target_ulong ESI asm(AREG10);
83 #define reg_ESI
84 #endif
85
86 #ifdef AREG11
87 register target_ulong EDI asm(AREG11);
88 #define reg_EDI
89 #endif
90
91 #endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
92
93 #define A0 T2
94
95 extern FILE *logfile;
96 extern int loglevel;
97
98 #ifndef reg_EAX
99 #define EAX (env->regs[R_EAX])
100 #endif
101 #ifndef reg_ECX
102 #define ECX (env->regs[R_ECX])
103 #endif
104 #ifndef reg_EDX
105 #define EDX (env->regs[R_EDX])
106 #endif
107 #ifndef reg_EBX
108 #define EBX (env->regs[R_EBX])
109 #endif
110 #ifndef reg_ESP
111 #define ESP (env->regs[R_ESP])
112 #endif
113 #ifndef reg_EBP
114 #define EBP (env->regs[R_EBP])
115 #endif
116 #ifndef reg_ESI
117 #define ESI (env->regs[R_ESI])
118 #endif
119 #ifndef reg_EDI
120 #define EDI (env->regs[R_EDI])
121 #endif
122 #define EIP  (env->eip)
123 #define DF  (env->df)
124
125 #define CC_SRC (env->cc_src)
126 #define CC_DST (env->cc_dst)
127 #define CC_OP  (env->cc_op)
128
129 /* float macros */
130 #define FT0    (env->ft0)
131 #define ST0    (env->fpregs[env->fpstt].d)
132 #define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
133 #define ST1    ST(1)
134
135 #ifdef USE_FP_CONVERT
136 #define FP_CONVERT  (env->fp_convert)
137 #endif
138
139 #include "cpu.h"
140 #include "exec-all.h"
141
142 typedef struct CCTable {
143     int (*compute_all)(void); /* return all the flags */
144     int (*compute_c)(void);  /* return the C flag */
145 } CCTable;
146
147 extern CCTable cc_table[];
148
149 void load_seg(int seg_reg, int selector);
150 void helper_ljmp_protected_T0_T1(int next_eip);
151 void helper_lcall_real_T0_T1(int shift, int next_eip);
152 void helper_lcall_protected_T0_T1(int shift, int next_eip);
153 void helper_iret_real(int shift);
154 void helper_iret_protected(int shift, int next_eip);
155 void helper_lret_protected(int shift, int addend);
156 void helper_lldt_T0(void);
157 void helper_ltr_T0(void);
158 void helper_movl_crN_T0(int reg);
159 void helper_movl_drN_T0(int reg);
160 void helper_invlpg(unsigned int addr);
161 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
162 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
163 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
164 void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
165 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, 
166                              int is_write, int is_user, int is_softmmu);
167 void tlb_fill(target_ulong addr, int is_write, int is_user, 
168               void *retaddr);
169 void __hidden cpu_lock(void);
170 void __hidden cpu_unlock(void);
171 void do_interrupt(int intno, int is_int, int error_code, 
172                   target_ulong next_eip, int is_hw);
173 void do_interrupt_user(int intno, int is_int, int error_code, 
174                        target_ulong next_eip);
175 void raise_interrupt(int intno, int is_int, int error_code, 
176                      int next_eip_addend);
177 void raise_exception_err(int exception_index, int error_code);
178 void raise_exception(int exception_index);
179 void __hidden cpu_loop_exit(void);
180
181 void OPPROTO op_movl_eflags_T0(void);
182 void OPPROTO op_movl_T0_eflags(void);
183 void helper_divl_EAX_T0(void);
184 void helper_idivl_EAX_T0(void);
185 void helper_mulq_EAX_T0(void);
186 void helper_imulq_EAX_T0(void);
187 void helper_imulq_T0_T1(void);
188 void helper_divq_EAX_T0(void);
189 void helper_idivq_EAX_T0(void);
190 void helper_cmpxchg8b(void);
191 void helper_cpuid(void);
192 void helper_enter_level(int level, int data32);
193 void helper_sysenter(void);
194 void helper_sysexit(void);
195 void helper_syscall(int next_eip_addend);
196 void helper_sysret(int dflag);
197 void helper_rdtsc(void);
198 void helper_rdmsr(void);
199 void helper_wrmsr(void);
200 void helper_lsl(void);
201 void helper_lar(void);
202 void helper_verr(void);
203 void helper_verw(void);
204
205 void check_iob_T0(void);
206 void check_iow_T0(void);
207 void check_iol_T0(void);
208 void check_iob_DX(void);
209 void check_iow_DX(void);
210 void check_iol_DX(void);
211
212 /* XXX: move that to a generic header */
213 #if !defined(CONFIG_USER_ONLY)
214
215 #define ldul_user ldl_user
216 #define ldul_kernel ldl_kernel
217
218 #define ACCESS_TYPE 0
219 #define MEMSUFFIX _kernel
220 #define DATA_SIZE 1
221 #include "softmmu_header.h"
222
223 #define DATA_SIZE 2
224 #include "softmmu_header.h"
225
226 #define DATA_SIZE 4
227 #include "softmmu_header.h"
228
229 #define DATA_SIZE 8
230 #include "softmmu_header.h"
231 #undef ACCESS_TYPE
232 #undef MEMSUFFIX
233
234 #define ACCESS_TYPE 1
235 #define MEMSUFFIX _user
236 #define DATA_SIZE 1
237 #include "softmmu_header.h"
238
239 #define DATA_SIZE 2
240 #include "softmmu_header.h"
241
242 #define DATA_SIZE 4
243 #include "softmmu_header.h"
244
245 #define DATA_SIZE 8
246 #include "softmmu_header.h"
247 #undef ACCESS_TYPE
248 #undef MEMSUFFIX
249
250 /* these access are slower, they must be as rare as possible */
251 #define ACCESS_TYPE 2
252 #define MEMSUFFIX _data
253 #define DATA_SIZE 1
254 #include "softmmu_header.h"
255
256 #define DATA_SIZE 2
257 #include "softmmu_header.h"
258
259 #define DATA_SIZE 4
260 #include "softmmu_header.h"
261
262 #define DATA_SIZE 8
263 #include "softmmu_header.h"
264 #undef ACCESS_TYPE
265 #undef MEMSUFFIX
266
267 #define ldub(p) ldub_data(p)
268 #define ldsb(p) ldsb_data(p)
269 #define lduw(p) lduw_data(p)
270 #define ldsw(p) ldsw_data(p)
271 #define ldl(p) ldl_data(p)
272 #define ldq(p) ldq_data(p)
273
274 #define stb(p, v) stb_data(p, v)
275 #define stw(p, v) stw_data(p, v)
276 #define stl(p, v) stl_data(p, v)
277 #define stq(p, v) stq_data(p, v)
278
279 static inline double ldfq(target_ulong ptr)
280 {
281     union {
282         double d;
283         uint64_t i;
284     } u;
285     u.i = ldq(ptr);
286     return u.d;
287 }
288
289 static inline void stfq(target_ulong ptr, double v)
290 {
291     union {
292         double d;
293         uint64_t i;
294     } u;
295     u.d = v;
296     stq(ptr, u.i);
297 }
298
299 static inline float ldfl(target_ulong ptr)
300 {
301     union {
302         float f;
303         uint32_t i;
304     } u;
305     u.i = ldl(ptr);
306     return u.f;
307 }
308
309 static inline void stfl(target_ulong ptr, float v)
310 {
311     union {
312         float f;
313         uint32_t i;
314     } u;
315     u.f = v;
316     stl(ptr, u.i);
317 }
318
319 #endif /* !defined(CONFIG_USER_ONLY) */
320
321 #ifdef USE_X86LDOUBLE
322 /* use long double functions */
323 #define floatx_to_int32 floatx80_to_int32
324 #define floatx_to_int64 floatx80_to_int64
325 #define floatx_abs floatx80_abs
326 #define floatx_chs floatx80_chs
327 #define floatx_round_to_int floatx80_round_to_int
328 #define floatx_compare floatx80_compare
329 #define floatx_compare_quiet floatx80_compare_quiet
330 #define sin sinl
331 #define cos cosl
332 #define sqrt sqrtl
333 #define pow powl
334 #define log logl
335 #define tan tanl
336 #define atan2 atan2l
337 #define floor floorl
338 #define ceil ceill
339 #else
340 #define floatx_to_int32 float64_to_int32
341 #define floatx_to_int64 float64_to_int64
342 #define floatx_abs float64_abs
343 #define floatx_chs float64_chs
344 #define floatx_round_to_int float64_round_to_int
345 #define floatx_compare float64_compare
346 #define floatx_compare_quiet float64_compare_quiet
347 #endif
348
349 extern CPU86_LDouble sin(CPU86_LDouble x);
350 extern CPU86_LDouble cos(CPU86_LDouble x);
351 extern CPU86_LDouble sqrt(CPU86_LDouble x);
352 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
353 extern CPU86_LDouble log(CPU86_LDouble x);
354 extern CPU86_LDouble tan(CPU86_LDouble x);
355 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
356 extern CPU86_LDouble floor(CPU86_LDouble x);
357 extern CPU86_LDouble ceil(CPU86_LDouble x);
358
359 #define RC_MASK         0xc00
360 #define RC_NEAR         0x000
361 #define RC_DOWN         0x400
362 #define RC_UP           0x800
363 #define RC_CHOP         0xc00
364
365 #define MAXTAN 9223372036854775808.0
366
367 #ifdef USE_X86LDOUBLE
368
369 /* only for x86 */
370 typedef union {
371     long double d;
372     struct {
373         unsigned long long lower;
374         unsigned short upper;
375     } l;
376 } CPU86_LDoubleU;
377
378 /* the following deal with x86 long double-precision numbers */
379 #define MAXEXPD 0x7fff
380 #define EXPBIAS 16383
381 #define EXPD(fp)        (fp.l.upper & 0x7fff)
382 #define SIGND(fp)       ((fp.l.upper) & 0x8000)
383 #define MANTD(fp)       (fp.l.lower)
384 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
385
386 #else
387
388 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
389 typedef union {
390     double d;
391 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
392     struct {
393         uint32_t lower;
394         int32_t upper;
395     } l;
396 #else
397     struct {
398         int32_t upper;
399         uint32_t lower;
400     } l;
401 #endif
402 #ifndef __arm__
403     int64_t ll;
404 #endif
405 } CPU86_LDoubleU;
406
407 /* the following deal with IEEE double-precision numbers */
408 #define MAXEXPD 0x7ff
409 #define EXPBIAS 1023
410 #define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
411 #define SIGND(fp)       ((fp.l.upper) & 0x80000000)
412 #ifdef __arm__
413 #define MANTD(fp)       (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
414 #else
415 #define MANTD(fp)       (fp.ll & ((1LL << 52) - 1))
416 #endif
417 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
418 #endif
419
420 static inline void fpush(void)
421 {
422     env->fpstt = (env->fpstt - 1) & 7;
423     env->fptags[env->fpstt] = 0; /* validate stack entry */
424 }
425
426 static inline void fpop(void)
427 {
428     env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
429     env->fpstt = (env->fpstt + 1) & 7;
430 }
431
432 #ifndef USE_X86LDOUBLE
433 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
434 {
435     CPU86_LDoubleU temp;
436     int upper, e;
437     uint64_t ll;
438
439     /* mantissa */
440     upper = lduw(ptr + 8);
441     /* XXX: handle overflow ? */
442     e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
443     e |= (upper >> 4) & 0x800; /* sign */
444     ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
445 #ifdef __arm__
446     temp.l.upper = (e << 20) | (ll >> 32);
447     temp.l.lower = ll;
448 #else
449     temp.ll = ll | ((uint64_t)e << 52);
450 #endif
451     return temp.d;
452 }
453
454 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
455 {
456     CPU86_LDoubleU temp;
457     int e;
458
459     temp.d = f;
460     /* mantissa */
461     stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
462     /* exponent + sign */
463     e = EXPD(temp) - EXPBIAS + 16383;
464     e |= SIGND(temp) >> 16;
465     stw(ptr + 8, e);
466 }
467 #else
468
469 /* XXX: same endianness assumed */
470
471 #ifdef CONFIG_USER_ONLY
472
473 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
474 {
475     return *(CPU86_LDouble *)ptr;
476 }
477
478 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
479 {
480     *(CPU86_LDouble *)ptr = f;
481 }
482
483 #else
484
485 /* we use memory access macros */
486
487 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
488 {
489     CPU86_LDoubleU temp;
490
491     temp.l.lower = ldq(ptr);
492     temp.l.upper = lduw(ptr + 8);
493     return temp.d;
494 }
495
496 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
497 {
498     CPU86_LDoubleU temp;
499     
500     temp.d = f;
501     stq(ptr, temp.l.lower);
502     stw(ptr + 8, temp.l.upper);
503 }
504
505 #endif /* !CONFIG_USER_ONLY */
506
507 #endif /* USE_X86LDOUBLE */
508
509 #define FPUS_IE (1 << 0)
510 #define FPUS_DE (1 << 1)
511 #define FPUS_ZE (1 << 2)
512 #define FPUS_OE (1 << 3)
513 #define FPUS_UE (1 << 4)
514 #define FPUS_PE (1 << 5)
515 #define FPUS_SF (1 << 6)
516 #define FPUS_SE (1 << 7)
517 #define FPUS_B  (1 << 15)
518
519 #define FPUC_EM 0x3f
520
521 extern const CPU86_LDouble f15rk[7];
522
523 void helper_fldt_ST0_A0(void);
524 void helper_fstt_ST0_A0(void);
525 void fpu_raise_exception(void);
526 CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
527 void helper_fbld_ST0_A0(void);
528 void helper_fbst_ST0_A0(void);
529 void helper_f2xm1(void);
530 void helper_fyl2x(void);
531 void helper_fptan(void);
532 void helper_fpatan(void);
533 void helper_fxtract(void);
534 void helper_fprem1(void);
535 void helper_fprem(void);
536 void helper_fyl2xp1(void);
537 void helper_fsqrt(void);
538 void helper_fsincos(void);
539 void helper_frndint(void);
540 void helper_fscale(void);
541 void helper_fsin(void);
542 void helper_fcos(void);
543 void helper_fxam_ST0(void);
544 void helper_fstenv(target_ulong ptr, int data32);
545 void helper_fldenv(target_ulong ptr, int data32);
546 void helper_fsave(target_ulong ptr, int data32);
547 void helper_frstor(target_ulong ptr, int data32);
548 void helper_fxsave(target_ulong ptr, int data64);
549 void helper_fxrstor(target_ulong ptr, int data64);
550 void restore_native_fp_state(CPUState *env);
551 void save_native_fp_state(CPUState *env);
552 float approx_rsqrt(float a);
553 float approx_rcp(float a);
554 void update_fp_status(void);
555
556 extern const uint8_t parity_table[256];
557 extern const uint8_t rclw_table[32];
558 extern const uint8_t rclb_table[32];
559
560 static inline uint32_t compute_eflags(void)
561 {
562     return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
563 }
564
565 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
566 static inline void load_eflags(int eflags, int update_mask)
567 {
568     CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
569     DF = 1 - (2 * ((eflags >> 10) & 1));
570     env->eflags = (env->eflags & ~update_mask) | 
571         (eflags & update_mask);
572 }
573
574 static inline void env_to_regs(void)
575 {
576 #ifdef reg_EAX
577     EAX = env->regs[R_EAX];
578 #endif
579 #ifdef reg_ECX
580     ECX = env->regs[R_ECX];
581 #endif
582 #ifdef reg_EDX
583     EDX = env->regs[R_EDX];
584 #endif
585 #ifdef reg_EBX
586     EBX = env->regs[R_EBX];
587 #endif
588 #ifdef reg_ESP
589     ESP = env->regs[R_ESP];
590 #endif
591 #ifdef reg_EBP
592     EBP = env->regs[R_EBP];
593 #endif
594 #ifdef reg_ESI
595     ESI = env->regs[R_ESI];
596 #endif
597 #ifdef reg_EDI
598     EDI = env->regs[R_EDI];
599 #endif
600 }
601
602 static inline void regs_to_env(void)
603 {
604 #ifdef reg_EAX
605     env->regs[R_EAX] = EAX;
606 #endif
607 #ifdef reg_ECX
608     env->regs[R_ECX] = ECX;
609 #endif
610 #ifdef reg_EDX
611     env->regs[R_EDX] = EDX;
612 #endif
613 #ifdef reg_EBX
614     env->regs[R_EBX] = EBX;
615 #endif
616 #ifdef reg_ESP
617     env->regs[R_ESP] = ESP;
618 #endif
619 #ifdef reg_EBP
620     env->regs[R_EBP] = EBP;
621 #endif
622 #ifdef reg_ESI
623     env->regs[R_ESI] = ESI;
624 #endif
625 #ifdef reg_EDI
626     env->regs[R_EDI] = EDI;
627 #endif
628 }