Remove most uses of phys_ram_base (initial patch by Ian Jackson)
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27
28 #include "etraxfs_dma.h"
29
30 #define D(x)
31
32 #define RW_DATA           0x0
33 #define RW_SAVED_DATA     0x58
34 #define RW_SAVED_DATA_BUF 0x5c
35 #define RW_GROUP          0x60
36 #define RW_GROUP_DOWN     0x7c
37 #define RW_CMD            0x80
38 #define RW_CFG            0x84
39 #define RW_STAT           0x88
40 #define RW_INTR_MASK      0x8c
41 #define RW_ACK_INTR       0x90
42 #define R_INTR            0x94
43 #define R_MASKED_INTR     0x98
44 #define RW_STREAM_CMD     0x9c
45
46 #define DMA_REG_MAX   0x100
47
48 /* descriptors */
49
50 // ------------------------------------------------------------ dma_descr_group
51 typedef struct dma_descr_group {
52   struct dma_descr_group       *next;
53   unsigned                      eol        : 1;
54   unsigned                      tol        : 1;
55   unsigned                      bol        : 1;
56   unsigned                                 : 1;
57   unsigned                      intr       : 1;
58   unsigned                                 : 2;
59   unsigned                      en         : 1;
60   unsigned                                 : 7;
61   unsigned                      dis        : 1;
62   unsigned                      md         : 16;
63   struct dma_descr_group       *up;
64   union {
65     struct dma_descr_context   *context;
66     struct dma_descr_group     *group;
67   }                             down;
68 } dma_descr_group;
69
70 // ---------------------------------------------------------- dma_descr_context
71 typedef struct dma_descr_context {
72   struct dma_descr_context     *next;
73   unsigned                      eol        : 1;
74   unsigned                                 : 3;
75   unsigned                      intr       : 1;
76   unsigned                                 : 1;
77   unsigned                      store_mode : 1;
78   unsigned                      en         : 1;
79   unsigned                                 : 7;
80   unsigned                      dis        : 1;
81   unsigned                      md0        : 16;
82   unsigned                      md1;
83   unsigned                      md2;
84   unsigned                      md3;
85   unsigned                      md4;
86   struct dma_descr_data        *saved_data;
87   char                         *saved_data_buf;
88 } dma_descr_context;
89
90 // ------------------------------------------------------------- dma_descr_data
91 typedef struct dma_descr_data {
92   struct dma_descr_data        *next;
93   char                         *buf;
94   unsigned                      eol        : 1;
95   unsigned                                 : 2;
96   unsigned                      out_eop    : 1;
97   unsigned                      intr       : 1;
98   unsigned                      wait       : 1;
99   unsigned                                 : 2;
100   unsigned                                 : 3;
101   unsigned                      in_eop     : 1;
102   unsigned                                 : 4;
103   unsigned                      md         : 16;
104   char                         *after;
105 } dma_descr_data;
106
107 /* Constants */
108 enum {
109   regk_dma_ack_pkt                         = 0x00000100,
110   regk_dma_anytime                         = 0x00000001,
111   regk_dma_array                           = 0x00000008,
112   regk_dma_burst                           = 0x00000020,
113   regk_dma_client                          = 0x00000002,
114   regk_dma_copy_next                       = 0x00000010,
115   regk_dma_copy_up                         = 0x00000020,
116   regk_dma_data_at_eol                     = 0x00000001,
117   regk_dma_dis_c                           = 0x00000010,
118   regk_dma_dis_g                           = 0x00000020,
119   regk_dma_idle                            = 0x00000001,
120   regk_dma_intern                          = 0x00000004,
121   regk_dma_load_c                          = 0x00000200,
122   regk_dma_load_c_n                        = 0x00000280,
123   regk_dma_load_c_next                     = 0x00000240,
124   regk_dma_load_d                          = 0x00000140,
125   regk_dma_load_g                          = 0x00000300,
126   regk_dma_load_g_down                     = 0x000003c0,
127   regk_dma_load_g_next                     = 0x00000340,
128   regk_dma_load_g_up                       = 0x00000380,
129   regk_dma_next_en                         = 0x00000010,
130   regk_dma_next_pkt                        = 0x00000010,
131   regk_dma_no                              = 0x00000000,
132   regk_dma_only_at_wait                    = 0x00000000,
133   regk_dma_restore                         = 0x00000020,
134   regk_dma_rst                             = 0x00000001,
135   regk_dma_running                         = 0x00000004,
136   regk_dma_rw_cfg_default                  = 0x00000000,
137   regk_dma_rw_cmd_default                  = 0x00000000,
138   regk_dma_rw_intr_mask_default            = 0x00000000,
139   regk_dma_rw_stat_default                 = 0x00000101,
140   regk_dma_rw_stream_cmd_default           = 0x00000000,
141   regk_dma_save_down                       = 0x00000020,
142   regk_dma_save_up                         = 0x00000020,
143   regk_dma_set_reg                         = 0x00000050,
144   regk_dma_set_w_size1                     = 0x00000190,
145   regk_dma_set_w_size2                     = 0x000001a0,
146   regk_dma_set_w_size4                     = 0x000001c0,
147   regk_dma_stopped                         = 0x00000002,
148   regk_dma_store_c                         = 0x00000002,
149   regk_dma_store_descr                     = 0x00000000,
150   regk_dma_store_g                         = 0x00000004,
151   regk_dma_store_md                        = 0x00000001,
152   regk_dma_sw                              = 0x00000008,
153   regk_dma_update_down                     = 0x00000020,
154   regk_dma_yes                             = 0x00000001
155 };
156
157 enum dma_ch_state
158 {
159         RST = 0,
160         STOPPED = 2,
161         RUNNING = 4
162 };
163
164 struct fs_dma_channel
165 {
166         int regmap;
167         qemu_irq *irq;
168         struct etraxfs_dma_client *client;
169
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         CPUState *env;
189         target_phys_addr_t base;
190
191         int nr_channels;
192         struct fs_dma_channel *channels;
193 };
194
195 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196 {
197         return ctrl->channels[c].regs[reg];
198 }
199
200 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201 {
202         return channel_reg(ctrl, c, RW_CFG) & 2;
203 }
204
205 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206 {
207         return (channel_reg(ctrl, c, RW_CFG) & 1)
208                 && ctrl->channels[c].client;
209 }
210
211 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212 {
213         /* Every channel has a 0x2000 ctrl register map.  */
214         return (addr - base) >> 13;
215 }
216
217 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
218 {
219         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
220
221         /* Load and decode. FIXME: handle endianness.  */
222         cpu_physical_memory_read (addr, 
223                                   (void *) &ctrl->channels[c].current_g, 
224                                   sizeof ctrl->channels[c].current_g);
225 }
226
227 static void dump_c(int ch, struct dma_descr_context *c)
228 {
229         printf("%s ch=%d\n", __func__, ch);
230         printf("next=%x\n", (uint32_t) c->next);
231         printf("saved_data=%x\n", (uint32_t) c->saved_data);
232         printf("saved_data_buf=%x\n", (uint32_t) c->saved_data_buf);
233         printf("eol=%x\n", (uint32_t) c->eol);
234 }
235
236 static void dump_d(int ch, struct dma_descr_data *d)
237 {
238         printf("%s ch=%d\n", __func__, ch);
239         printf("next=%x\n", (uint32_t) d->next);
240         printf("buf=%x\n", (uint32_t) d->buf);
241         printf("after=%x\n", (uint32_t) d->after);
242         printf("intr=%x\n", (uint32_t) d->intr);
243         printf("out_eop=%x\n", (uint32_t) d->out_eop);
244         printf("in_eop=%x\n", (uint32_t) d->in_eop);
245         printf("eol=%x\n", (uint32_t) d->eol);
246 }
247
248 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
249 {
250         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
251
252         /* Load and decode. FIXME: handle endianness.  */
253         cpu_physical_memory_read (addr, 
254                                   (void *) &ctrl->channels[c].current_c, 
255                                   sizeof ctrl->channels[c].current_c);
256
257         D(dump_c(c, &ctrl->channels[c].current_c));
258         /* I guess this should update the current pos.  */
259         ctrl->channels[c].regs[RW_SAVED_DATA] = 
260                 (uint32_t)ctrl->channels[c].current_c.saved_data;
261         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
262                 (uint32_t)ctrl->channels[c].current_c.saved_data_buf;
263 }
264
265 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
266 {
267         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
268
269         /* Load and decode. FIXME: handle endianness.  */
270         D(printf("%s addr=%x\n", __func__, addr));
271         cpu_physical_memory_read (addr,
272                                   (void *) &ctrl->channels[c].current_d, 
273                                   sizeof ctrl->channels[c].current_d);
274
275         D(dump_d(c, &ctrl->channels[c].current_d));
276         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
277                 (uint32_t)ctrl->channels[c].current_d.buf;
278 }
279
280 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
281 {
282         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
283
284         /* Load and decode. FIXME: handle endianness.  */
285         D(printf("%s addr=%x\n", __func__, addr));
286         cpu_physical_memory_write (addr,
287                                   (void *) &ctrl->channels[c].current_d, 
288                                   sizeof ctrl->channels[c].current_d);
289 }
290
291 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
292 {
293         /* FIXME:  */
294 }
295
296 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
297 {
298         if (ctrl->channels[c].client)
299         {
300                 ctrl->channels[c].eol = 0;
301                 ctrl->channels[c].state = RUNNING;
302         } else
303                 printf("WARNING: starting DMA ch %d with no client\n", c);
304 }
305
306 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
307 {
308         if (!channel_en(ctrl, c) 
309             || channel_stopped(ctrl, c)
310             || ctrl->channels[c].state != RUNNING
311             /* Only reload the current data descriptor if it has eol set.  */
312             || !ctrl->channels[c].current_d.eol) {
313                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
314                          c, ctrl->channels[c].state,
315                          channel_stopped(ctrl, c),
316                          channel_en(ctrl,c),
317                          ctrl->channels[c].eol));
318                 D(dump_d(c, &ctrl->channels[c].current_d));
319                 return;
320         }
321
322         /* Reload the current descriptor.  */
323         channel_load_d(ctrl, c);
324
325         /* If the current descriptor cleared the eol flag and we had already
326            reached eol state, do the continue.  */
327         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
328                 D(printf("continue %d ok %x\n", c,
329                          ctrl->channels[c].current_d.next));
330                 ctrl->channels[c].regs[RW_SAVED_DATA] =
331                         (uint32_t) ctrl->channels[c].current_d.next;
332                 channel_load_d(ctrl, c);
333                 channel_start(ctrl, c);
334         }
335 }
336
337 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
338 {
339         unsigned int cmd = v & ((1 << 10) - 1);
340
341         D(printf("%s cmd=%x\n", __func__, cmd));
342         if (cmd & regk_dma_load_d) {
343                 channel_load_d(ctrl, c);
344                 if (cmd & regk_dma_burst)
345                         channel_start(ctrl, c);
346         }
347
348         if (cmd & regk_dma_load_c) {
349                 channel_load_c(ctrl, c);
350         }
351 }
352
353 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
354 {
355         D(printf("%s %d\n", __func__, c));
356         ctrl->channels[c].regs[R_INTR] &=
357                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
358
359         ctrl->channels[c].regs[R_MASKED_INTR] =
360                 ctrl->channels[c].regs[R_INTR]
361                 & ctrl->channels[c].regs[RW_INTR_MASK];
362
363         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
364                  c,
365                  ctrl->channels[c].regs[R_MASKED_INTR]));
366
367         if (ctrl->channels[c].regs[R_MASKED_INTR])
368                 qemu_irq_raise(ctrl->channels[c].irq[0]);
369         else
370                 qemu_irq_lower(ctrl->channels[c].irq[0]);
371 }
372
373 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
374 {
375         uint32_t len;
376         uint32_t saved_data_buf;
377         unsigned char buf[2 * 1024];
378
379         if (ctrl->channels[c].eol == 1)
380                 return;
381
382         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
383
384         D(printf("buf=%x after=%x saved_data_buf=%x\n",
385                  (uint32_t)ctrl->channels[c].current_d.buf,
386                  (uint32_t)ctrl->channels[c].current_d.after,
387                  saved_data_buf));
388
389         if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after) {
390                 /* Done. Step to next.  */
391                 if (ctrl->channels[c].current_d.out_eop) {
392                         /* TODO: signal eop to the client.  */
393                         D(printf("signal eop\n"));
394                 }
395                 if (ctrl->channels[c].current_d.intr) {
396                         /* TODO: signal eop to the client.  */
397                         /* data intr.  */
398                         D(printf("signal intr\n"));
399                         ctrl->channels[c].regs[R_INTR] |= (1 << 2);
400                         channel_update_irq(ctrl, c);
401                 }
402                 if (ctrl->channels[c].current_d.eol) {
403                         D(printf("channel %d EOL\n", c));
404                         ctrl->channels[c].eol = 1;
405                         channel_stop(ctrl, c);
406                 } else {
407                         ctrl->channels[c].regs[RW_SAVED_DATA] =
408                                 (uint32_t) ctrl->channels[c].current_d.next;
409                         /* Load new descriptor.  */
410                         channel_load_d(ctrl, c);
411                 }
412
413                 channel_store_d(ctrl, c);
414                 D(dump_d(c, &ctrl->channels[c].current_d));
415                 return;
416         }
417
418         len = (uint32_t) ctrl->channels[c].current_d.after;
419         len -= saved_data_buf;
420
421         if (len > sizeof buf)
422                 len = sizeof buf;
423         cpu_physical_memory_read (saved_data_buf, buf, len);
424
425         D(printf("channel %d pushes %x %u bytes\n", c, 
426                  saved_data_buf, len));
427         /* TODO: Push content.  */
428         if (ctrl->channels[c].client->client.push)
429                 ctrl->channels[c].client->client.push(
430                         ctrl->channels[c].client->client.opaque, buf, len);
431         else
432                 printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
433
434         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] += len;
435 }
436
437 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
438                               unsigned char *buf, int buflen, int eop)
439 {
440         uint32_t len;
441         uint32_t saved_data_buf;
442
443         if (ctrl->channels[c].eol == 1)
444                 return 0;
445
446         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
447         len = (uint32_t) ctrl->channels[c].current_d.after;
448         len -= saved_data_buf;
449         
450         if (len > buflen)
451                 len = buflen;
452
453         cpu_physical_memory_write (saved_data_buf, buf, len);
454         saved_data_buf += len;
455
456         if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after
457             || eop) {
458                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
459
460                 D(printf("in dscr end len=%d\n", 
461                          ctrl->channels[c].current_d.after
462                          - ctrl->channels[c].current_d.buf));
463                 ctrl->channels[c].current_d.after = 
464                         (void *) saved_data_buf;
465
466                 /* Done. Step to next.  */
467                 if (ctrl->channels[c].current_d.intr) {
468                         /* TODO: signal eop to the client.  */
469                         /* data intr.  */
470                         ctrl->channels[c].regs[R_INTR] |= 3;
471                 }
472                 if (eop) {
473                         ctrl->channels[c].current_d.in_eop = 1;
474                         ctrl->channels[c].regs[R_INTR] |= 8;
475                 }
476                 if (r_intr != ctrl->channels[c].regs[R_INTR])
477                         channel_update_irq(ctrl, c);
478
479                 channel_store_d(ctrl, c);
480                 D(dump_d(c, &ctrl->channels[c].current_d));
481
482                 if (ctrl->channels[c].current_d.eol) {
483                         D(printf("channel %d EOL\n", c));
484                         ctrl->channels[c].eol = 1;
485                         channel_stop(ctrl, c);
486                 } else {
487                         ctrl->channels[c].regs[RW_SAVED_DATA] =
488                                 (uint32_t) ctrl->channels[c].current_d.next;
489                         /* Load new descriptor.  */
490                         channel_load_d(ctrl, c);
491                         saved_data_buf =
492                                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF];
493                 }
494         }
495
496         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
497         return len;
498 }
499
500 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
501 {
502         if (ctrl->channels[c].client->client.pull)
503                 ctrl->channels[c].client->client.pull(
504                         ctrl->channels[c].client->client.opaque);
505 }
506
507 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
508 {
509         struct fs_dma_ctrl *ctrl = opaque;
510         CPUState *env = ctrl->env;
511         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
512                   addr, env->pc);
513         return 0;
514 }
515
516 static uint32_t
517 dma_readl (void *opaque, target_phys_addr_t addr)
518 {
519         struct fs_dma_ctrl *ctrl = opaque;
520         int c;
521         uint32_t r = 0;
522
523         /* Make addr relative to this instances base.  */
524         c = fs_channel(ctrl->base, addr);
525         addr &= 0x1fff;
526         switch (addr)
527         {
528                 case RW_STAT:
529                         r = ctrl->channels[c].state & 7;
530                         r |= ctrl->channels[c].eol << 5;
531                         r |= ctrl->channels[c].stream_cmd_src << 8;
532                         break;
533
534                 default:
535                         r = ctrl->channels[c].regs[addr];
536                         D(printf ("%s c=%d addr=%x pc=%x\n",
537                                  __func__, c, addr, env->pc));
538                         break;
539         }
540         return r;
541 }
542
543 static void
544 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
545 {
546         struct fs_dma_ctrl *ctrl = opaque;
547         CPUState *env = ctrl->env;
548         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
549                   addr, env->pc);
550 }
551
552 static void
553 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
554 {
555         struct fs_dma_ctrl *ctrl = opaque;
556         int c;
557
558         /* Make addr relative to this instances base.  */
559         c = fs_channel(ctrl->base, addr);
560         addr &= 0x1fff;
561         switch (addr)
562         {
563                 case RW_DATA:
564                         printf("RW_DATA=%x\n", value);                  
565                         break;
566
567                 case RW_CFG:
568                         ctrl->channels[c].regs[addr] = value;
569                         break;
570                 case RW_CMD:
571                         /* continue.  */
572                         ctrl->channels[c].regs[addr] = value;
573                         channel_continue(ctrl, c);
574                         break;
575
576                 case RW_SAVED_DATA:
577                 case RW_SAVED_DATA_BUF:
578                 case RW_GROUP:
579                 case RW_GROUP_DOWN:
580                         ctrl->channels[c].regs[addr] = value;
581                         break;
582
583                 case RW_ACK_INTR:
584                 case RW_INTR_MASK:
585                         ctrl->channels[c].regs[addr] = value;
586                         channel_update_irq(ctrl, c);
587                         if (addr == RW_ACK_INTR)
588                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
589                         break;
590
591                 case RW_STREAM_CMD:
592                         ctrl->channels[c].regs[addr] = value;
593                         channel_stream_cmd(ctrl, c, value);
594                         break;
595
596                 default:
597                         D(printf ("%s c=%d %x %x pc=%x\n",
598                                   __func__, c, addr, value, env->pc));
599                         break;
600         }
601 }
602
603 static CPUReadMemoryFunc *dma_read[] = {
604         &dma_rinvalid,
605         &dma_rinvalid,
606         &dma_readl,
607 };
608
609 static CPUWriteMemoryFunc *dma_write[] = {
610         &dma_winvalid,
611         &dma_winvalid,
612         &dma_writel,
613 };
614
615 void etraxfs_dmac_run(void *opaque)
616 {
617         struct fs_dma_ctrl *ctrl = opaque;
618         int i;
619         int p = 0;
620
621         for (i = 0; 
622              i < ctrl->nr_channels;
623              i++)
624         {
625                 if (ctrl->channels[i].state == RUNNING)
626                 {
627                         p++;
628                         if (ctrl->channels[i].input)
629                                 channel_in_run(ctrl, i);
630                         else
631                                 channel_out_run(ctrl, i);
632                 }
633         }
634 }
635
636 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
637                        void *buf, int len, int eop)
638 {
639         return channel_in_process(client->ctrl, client->channel, 
640                                   buf, len, eop);
641 }
642
643 /* Connect an IRQ line with a channel.  */
644 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
645 {
646         struct fs_dma_ctrl *ctrl = opaque;
647         ctrl->channels[c].irq = line;
648         ctrl->channels[c].input = input;
649 }
650
651 void etraxfs_dmac_connect_client(void *opaque, int c, 
652                                  struct etraxfs_dma_client *cl)
653 {
654         struct fs_dma_ctrl *ctrl = opaque;
655         cl->ctrl = ctrl;
656         cl->channel = c;
657         ctrl->channels[c].client = cl;
658 }
659
660
661 void *etraxfs_dmac_init(CPUState *env, 
662                         target_phys_addr_t base, int nr_channels)
663 {
664         struct fs_dma_ctrl *ctrl = NULL;
665         int i;
666
667         ctrl = qemu_mallocz(sizeof *ctrl);
668         if (!ctrl)
669                 return NULL;
670
671         ctrl->base = base;
672         ctrl->env = env;
673         ctrl->nr_channels = nr_channels;
674         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
675         if (!ctrl->channels)
676                 goto err;
677
678         for (i = 0; i < nr_channels; i++)
679         {
680                 ctrl->channels[i].regmap = cpu_register_io_memory(0,
681                                                                   dma_read, 
682                                                                   dma_write, 
683                                                                   ctrl);
684                 cpu_register_physical_memory (base + i * 0x2000,
685                                               sizeof ctrl->channels[i].regs, 
686                                               ctrl->channels[i].regmap);
687         }
688
689         return ctrl;
690   err:
691         qemu_free(ctrl->channels);
692         qemu_free(ctrl);
693         return NULL;
694 }