Update to 2.0.0 tree from current Fremantle build
[opencv] / 3rdparty / flann / algorithms / kmeans_index.h
diff --git a/3rdparty/flann/algorithms/kmeans_index.h b/3rdparty/flann/algorithms/kmeans_index.h
new file mode 100644 (file)
index 0000000..19fe51d
--- /dev/null
@@ -0,0 +1,1119 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef KMEANSTREE_H
+#define KMEANSTREE_H
+
+#include <algorithm>
+#include <string>
+#include <cstdlib>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+#include "constants.h"
+#include "common.h"
+#include "heap.h"
+#include "allocator.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "random.h"
+#include "nn_index.h"
+
+using namespace std;
+
+
+namespace flann
+{
+
+/**
+* Chooses the initial centers in the k-means clustering in a random manner.
+*
+* Params:
+*     k = number of centers
+*     vecs = the dataset of points
+*     indices = indices in the dataset
+*     indices_length = length of indices vector
+*
+*/
+void chooseCentersRandom(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length)
+{
+    UniqueRandom r(indices_length);
+
+    int index;
+    for (index=0;index<k;++index) {
+        bool duplicate = true;
+        int rnd;
+        while (duplicate) {
+            duplicate = false;
+            rnd = r.next();
+            if (rnd<0) {
+                centers_length = index;
+                return;
+            }
+
+            centers[index] = vecs[indices[rnd]];
+
+            for (int j=0;j<index;++j) {
+                float sq = flann_dist(centers[index],centers[index]+vecs.cols,centers[j]);
+                if (sq<1e-16) {
+                    duplicate = true;
+                }
+            }
+        }
+    }
+
+    centers_length = index;
+}
+
+
+/**
+* Chooses the initial centers in the k-means using Gonzales' algorithm
+* so that the centers are spaced apart from each other.
+*
+* Params:
+*     k = number of centers
+*     vecs = the dataset of points
+*     indices = indices in the dataset
+* Returns:
+*/
+void chooseCentersGonzales(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length)
+{
+    int n = indices_length;
+
+
+    int rnd = rand_int(n);
+    assert(rnd >=0 && rnd < n);
+
+    centers[0] = vecs[indices[rnd]];
+
+    int index;
+    for (index=1; index<k; ++index) {
+
+        int best_index = -1;
+        float best_val = 0;
+        for (int j=0;j<n;++j) {
+            float dist = flann_dist(centers[0],centers[0]+vecs.cols,vecs[indices[j]]);
+            for (int i=1;i<index;++i) {
+                    float tmp_dist = flann_dist(centers[i],centers[i]+vecs.cols,vecs[indices[j]]);
+                if (tmp_dist<dist) {
+                    dist = tmp_dist;
+                }
+            }
+            if (dist>best_val) {
+                best_val = dist;
+                best_index = j;
+            }
+        }
+        if (best_index!=-1) {
+            centers[index] = vecs[indices[best_index]];
+        }
+        else {
+            break;
+        }
+    }
+    centers_length = index;
+}
+
+
+/**
+* Chooses the initial centers in the k-means using the algorithm
+* proposed in the KMeans++ paper:
+* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+*
+* Implementation of this function was converted from the one provided in Arthur's code.
+*
+* Params:
+*     k = number of centers
+*     vecs = the dataset of points
+*     indices = indices in the dataset
+* Returns:
+*/
+void chooseCentersKMeanspp(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length)
+{
+    int n = indices_length;
+
+    double currentPot = 0;
+    double* closestDistSq = new double[n];
+
+    // Choose one random center and set the closestDistSq values
+    int index = rand_int(n);
+    assert(index >=0 && index < n);
+    centers[0] = vecs[indices[index]];
+
+    for (int i = 0; i < n; i++) {
+        closestDistSq[i] = flann_dist(vecs[indices[i]], vecs[indices[i]] + vecs.cols, vecs[indices[index]]);
+        currentPot += closestDistSq[i];
+    }
+
+
+    const int numLocalTries = 1;
+
+    // Choose each center
+    int centerCount;
+    for (centerCount = 1; centerCount < k; centerCount++) {
+
+        // Repeat several trials
+        double bestNewPot = -1;
+        int bestNewIndex = 0;
+        for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+            // Choose our center - have to be slightly careful to return a valid answer even accounting
+            // for possible rounding errors
+        double randVal = rand_double(currentPot);
+            for (index = 0; index < n-1; index++) {
+                if (randVal <= closestDistSq[index])
+                    break;
+                else
+                    randVal -= closestDistSq[index];
+            }
+
+            // Compute the new potential
+            double newPot = 0;
+            for (int i = 0; i < n; i++)
+                newPot += min( (double)flann_dist(vecs[indices[i]], vecs[indices[i]] + vecs.cols, vecs[indices[index]]), closestDistSq[i] );
+
+            // Store the best result
+            if (bestNewPot < 0 || newPot < bestNewPot) {
+                bestNewPot = newPot;
+                bestNewIndex = index;
+            }
+        }
+
+        // Add the appropriate center
+        centers[centerCount] = vecs[indices[bestNewIndex]];
+        currentPot = bestNewPot;
+        for (int i = 0; i < n; i++)
+            closestDistSq[i] = min( (double)flann_dist(vecs[indices[i]], vecs[indices[i]]+vecs.cols, vecs[indices[bestNewIndex]]), closestDistSq[i] );
+    }
+
+    centers_length = centerCount;
+
+       delete[] closestDistSq;
+}
+
+
+
+
+namespace {
+
+    typedef void (*centersAlgFunction)(int, const Matrix<float>&, int*, int, float**, int&);
+    /**
+    * Associative array with functions to use for choosing the cluster centers.
+    */
+    map<flann_centers_init_t,centersAlgFunction> centerAlgs;
+    /**
+    * Static initializer. Performs initialization befor the program starts.
+    */
+
+    void centers_init()
+    {
+        centerAlgs[CENTERS_RANDOM] = &chooseCentersRandom;
+        centerAlgs[CENTERS_GONZALES] = &chooseCentersGonzales;
+        centerAlgs[CENTERS_KMEANSPP] = &chooseCentersKMeanspp;
+    }
+
+    struct Init {
+        Init() { centers_init(); }
+    };
+    Init __init;
+}
+
+
+
+
+
+/**
+ * Hierarchical kmeans index
+ *
+ * Contains a tree constructed through a hierarchical kmeans clustering
+ * and other information for indexing a set of points for nearest-neighbor matching.
+ */
+class KMeansIndex : public NNIndex
+{
+
+       /**
+        * The branching factor used in the hierarchical k-means clustering
+        */
+       int branching;
+
+       /**
+        * Maximum number of iterations to use when performing k-means
+        * clustering
+        */
+       int max_iter;
+
+     /**
+     * Cluster border index. This is used in the tree search phase when determining
+     * the closest cluster to explore next. A zero value takes into account only
+     * the cluster centers, a value greater then zero also take into account the size
+     * of the cluster.
+     */
+    float cb_index;
+
+       /**
+        * The dataset used by this index
+        */
+    const Matrix<float> dataset;
+
+    /**
+    * Number of features in the dataset.
+    */
+    int size_;
+
+    /**
+    * Length of each feature.
+    */
+    int veclen_;
+
+
+       /**
+        * Struture representing a node in the hierarchical k-means tree.
+        */
+       struct KMeansNodeSt     {
+               /**
+                * The cluster center.
+                */
+               float* pivot;
+               /**
+                * The cluster radius.
+                */
+               float radius;
+               /**
+                * The cluster mean radius.
+                */
+               float mean_radius;
+               /**
+                * The cluster variance.
+                */
+               float variance;
+               /**
+                * The cluster size (number of points in the cluster)
+                */
+               int size;
+               /**
+                * Child nodes (only for non-terminal nodes)
+                */
+               KMeansNodeSt** childs;
+               /**
+                * Node points (only for terminal nodes)
+                */
+               int* indices;
+               /**
+                * Level
+                */
+               int level;
+       };
+    typedef KMeansNodeSt* KMeansNode;
+
+
+
+    /**
+     * Alias definition for a nicer syntax.
+     */
+    typedef BranchStruct<KMeansNode> BranchSt;
+
+    /**
+     * Priority queue storing intermediate branches in the best-bin-first search
+     */
+    Heap<BranchSt>* heap;
+
+
+
+       /**
+        * The root node in the tree.
+        */
+       KMeansNode root;
+
+       /**
+        *  Array of indices to vectors in the dataset.
+        */
+       int* indices;
+
+
+       /**
+        * Pooled memory allocator.
+        *
+        * Using a pooled memory allocator is more efficient
+        * than allocating memory directly when there is a large
+        * number small of memory allocations.
+        */
+       PooledAllocator pool;
+
+       /**
+        * Memory occupied by the index.
+        */
+       int memoryCounter;
+
+
+    /**
+    * The function used for choosing the cluster centers.
+    */
+    centersAlgFunction chooseCenters;
+
+
+
+public:
+
+
+    flann_algorithm_t getType() const
+    {
+        return KMEANS;
+    }
+
+       /**
+        * Index constructor
+        *
+        * Params:
+        *              inputData = dataset with the input features
+        *              params = parameters passed to the hierarchical k-means algorithm
+        */
+       KMeansIndex(const Matrix<float>& inputData, const KMeansIndexParams& params = KMeansIndexParams() )
+               : dataset(inputData), root(NULL), indices(NULL)
+       {
+               memoryCounter = 0;
+
+        size_ = dataset.rows;
+        veclen_ = dataset.cols;
+
+        branching = params.branching;
+        max_iter = params.iterations;
+        if (max_iter<0) {
+               max_iter = numeric_limits<int>::max();
+        }
+        flann_centers_init_t centersInit = params.centers_init;
+
+               if ( centerAlgs.find(centersInit) != centerAlgs.end() ) {
+                       chooseCenters = centerAlgs[centersInit];
+               }
+               else {
+                       throw FLANNException("Unknown algorithm for choosing initial centers.");
+               }
+        cb_index = 0.4f;
+
+               heap = new Heap<BranchSt>(size_);
+       }
+
+
+       /**
+        * Index destructor.
+        *
+        * Release the memory used by the index.
+        */
+       virtual ~KMeansIndex()
+       {
+               if (root != NULL) {
+                       free_centers(root);
+               }
+               delete heap;
+        if (indices!=NULL) {
+                 delete[] indices;
+        }
+       }
+
+    /**
+    *  Returns size of index.
+    */
+    int size() const
+    {
+        return size_;
+    }
+
+    /**
+    * Returns the length of an index feature.
+    */
+    int veclen() const
+    {
+        return veclen_;
+    }
+
+
+    void set_cb_index( float index)
+    {
+        cb_index = index;
+    }
+
+
+       /**
+        * Computes the inde memory usage
+        * Returns: memory used by the index
+        */
+       int usedMemory() const
+       {
+               return  pool.usedMemory+pool.wastedMemory+memoryCounter;
+       }
+
+       /**
+        * Builds the index
+        */
+       void buildIndex()
+       {
+               if (branching<2) {
+                       throw FLANNException("Branching factor must be at least 2");
+               }
+
+               indices = new int[size_];
+               for (int i=0;i<size_;++i) {
+                       indices[i] = i;
+               }
+
+               root = pool.allocate<KMeansNodeSt>();
+               computeNodeStatistics(root, indices, size_);
+               computeClustering(root, indices, size_, branching,0);
+       }
+
+
+    void saveIndex(FILE* stream)
+    {
+       save_header(stream, *this);
+       save_value(stream, branching);
+       save_value(stream, max_iter);
+       save_value(stream, memoryCounter);
+       save_value(stream, cb_index);
+       save_value(stream, *indices, size_);
+
+               save_tree(stream, root);
+
+    }
+
+
+    void loadIndex(FILE* stream)
+    {
+       IndexHeader header = load_header(stream);
+
+       if (header.rows!=size() || header.cols!=veclen()) {
+               throw FLANNException("The index saved belongs to a different dataset");
+       }
+       load_value(stream, branching);
+       load_value(stream, max_iter);
+       load_value(stream, memoryCounter);
+       load_value(stream, cb_index);
+       if (indices!=NULL) {
+               delete[] indices;
+       }
+               indices = new int[size_];
+       load_value(stream, *indices, size_);
+
+       if (root!=NULL) {
+               free_centers(root);
+       }
+               load_tree(stream, root);
+    }
+
+
+    /**
+     * Find set of nearest neighbors to vec. Their indices are stored inside
+     * the result object.
+     *
+     * Params:
+     *     result = the result object in which the indices of the nearest-neighbors are stored
+     *     vec = the vector for which to search the nearest neighbors
+     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
+     */
+    void findNeighbors(ResultSet& result, const float* vec, const SearchParams& searchParams)
+    {
+        int maxChecks = searchParams.checks;
+
+        if (maxChecks<0) {
+            findExactNN(root, result, vec);
+        }
+        else {
+            heap->clear();
+            int checks = 0;
+
+            findNN(root, result, vec, checks, maxChecks);
+
+            BranchSt branch;
+            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+                KMeansNode node = branch.node;
+                findNN(node, result, vec, checks, maxChecks);
+            }
+            assert(result.full());
+        }
+
+    }
+
+
+    /**
+     * Clustering function that takes a cut in the hierarchical k-means
+     * tree and return the clusters centers of that clustering.
+     * Params:
+     *     numClusters = number of clusters to have in the clustering computed
+     * Returns: number of cluster centers
+     */
+    int getClusterCenters(Matrix<float>& centers)
+    {
+        int numClusters = centers.rows;
+        if (numClusters<1) {
+            throw FLANNException("Number of clusters must be at least 1");
+        }
+
+        float variance;
+        KMeansNode* clusters = new KMeansNode[numClusters];
+
+        int clusterCount = getMinVarianceClusters(root, clusters, numClusters, variance);
+
+//         logger.info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
+
+
+        for (int i=0;i<clusterCount;++i) {
+            float* center = clusters[i]->pivot;
+            for (int j=0;j<veclen_;++j) {
+                centers[i][j] = center[j];
+            }
+        }
+               delete[] clusters;
+
+        return clusterCount;
+    }
+
+//    Params estimateSearchParams(float precision, Dataset<float>* testset = NULL)
+//    {
+//        Params params;
+//
+//        return params;
+//    }
+
+
+
+private:
+
+
+    void save_tree(FILE* stream, KMeansNode node)
+    {
+       save_value(stream, *node);
+       save_value(stream, *(node->pivot), veclen_);
+       if (node->childs==NULL) {
+               int indices_offset = node->indices - indices;
+               save_value(stream, indices_offset);
+       }
+       else {
+               for(int i=0; i<branching; ++i) {
+                       save_tree(stream, node->childs[i]);
+               }
+       }
+    }
+
+
+    void load_tree(FILE* stream, KMeansNode& node)
+    {
+       node = pool.allocate<KMeansNodeSt>();
+       load_value(stream, *node);
+       node->pivot = new float[veclen_];
+       load_value(stream, *(node->pivot), veclen_);
+       if (node->childs==NULL) {
+               int indices_offset;
+               load_value(stream, indices_offset);
+               node->indices = indices + indices_offset;
+       }
+       else {
+               node->childs = pool.allocate<KMeansNode>(branching);
+               for(int i=0; i<branching; ++i) {
+                       load_tree(stream, node->childs[i]);
+               }
+       }
+    }
+
+
+    /**
+    * Helper function
+    */
+    void free_centers(KMeansNode node)
+    {
+        delete[] node->pivot;
+        if (node->childs!=NULL) {
+            for (int k=0;k<branching;++k) {
+                free_centers(node->childs[k]);
+            }
+        }
+    }
+
+       /**
+        * Computes the statistics of a node (mean, radius, variance).
+        *
+        * Params:
+        *     node = the node to use
+        *     indices = the indices of the points belonging to the node
+        */
+       void computeNodeStatistics(KMeansNode node, int* indices, int indices_length) {
+
+               float radius = 0;
+               float variance = 0;
+               float* mean = new float[veclen_];
+               memoryCounter += veclen_*sizeof(float);
+
+        memset(mean,0,veclen_*sizeof(float));
+
+               for (int i=0;i<size_;++i) {
+                       float* vec = dataset[indices[i]];
+            for (int j=0;j<veclen_;++j) {
+                mean[j] += vec[j];
+            }
+                       variance += flann_dist(vec,vec+veclen_,zero);
+               }
+               for (int j=0;j<veclen_;++j) {
+                       mean[j] /= size_;
+               }
+               variance /= size_;
+               variance -= flann_dist(mean,mean+veclen_,zero);
+
+               float tmp = 0;
+               for (int i=0;i<indices_length;++i) {
+                       tmp = flann_dist(mean, mean + veclen_, dataset[indices[i]]);
+                       if (tmp>radius) {
+                               radius = tmp;
+                       }
+               }
+
+               node->variance = variance;
+               node->radius = radius;
+               node->pivot = mean;
+       }
+
+
+       /**
+        * The method responsible with actually doing the recursive hierarchical
+        * clustering
+        *
+        * Params:
+        *     node = the node to cluster
+        *     indices = indices of the points belonging to the current node
+        *     branching = the branching factor to use in the clustering
+        *
+        * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+        */
+       void computeClustering(KMeansNode node, int* indices, int indices_length, int branching, int level)
+       {
+               node->size = indices_length;
+               node->level = level;
+
+               if (indices_length < branching) {
+                       node->indices = indices;
+            sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+                       return;
+               }
+
+               float** initial_centers = new float*[branching];
+        int centers_length;
+               chooseCenters(branching, dataset, indices, indices_length, initial_centers, centers_length);
+
+               if (centers_length<branching) {
+            node->indices = indices;
+            sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+                       return;
+               }
+
+
+        Matrix<double> dcenters(branching,veclen_);
+        for (int i=0; i<centers_length; ++i) {
+            for (int k=0; k<veclen_; ++k) {
+                dcenters[i][k] = double(initial_centers[i][k]);
+            }
+        }
+               delete[] initial_centers;
+
+               float* radiuses = new float[branching];
+               int* count = new int[branching];
+        for (int i=0;i<branching;++i) {
+            radiuses[i] = 0;
+            count[i] = 0;
+        }
+
+        //     assign points to clusters
+               int* belongs_to = new int[indices_length];
+               for (int i=0;i<indices_length;++i) {
+
+                       float sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]] + veclen_ ,dcenters[0]);
+                       belongs_to[i] = 0;
+                       for (int j=1;j<branching;++j) {
+                               float new_sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_, dcenters[j]);
+                               if (sq_dist>new_sq_dist) {
+                                       belongs_to[i] = j;
+                                       sq_dist = new_sq_dist;
+                               }
+                       }
+            if (sq_dist>radiuses[belongs_to[i]]) {
+                radiuses[belongs_to[i]] = sq_dist;
+            }
+                       count[belongs_to[i]]++;
+               }
+
+               bool converged = false;
+               int iteration = 0;
+               while (!converged && iteration<max_iter) {
+                       converged = true;
+                       iteration++;
+
+                       // compute the new cluster centers
+                       for (int i=0;i<branching;++i) {
+                memset(dcenters[i],0,sizeof(double)*veclen_);
+                radiuses[i] = 0;
+                       }
+            for (int i=0;i<indices_length;++i) {
+                               float* vec = dataset[indices[i]];
+                               double* center = dcenters[belongs_to[i]];
+                               for (int k=0;k<veclen_;++k) {
+                                       center[k] += vec[k];
+                               }
+                       }
+                       for (int i=0;i<branching;++i) {
+                int cnt = count[i];
+                for (int k=0;k<veclen_;++k) {
+                    dcenters[i][k] /= cnt;
+                }
+                       }
+
+                       // reassign points to clusters
+                       for (int i=0;i<indices_length;++i) {
+                               float sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_ ,dcenters[0]);
+                               int new_centroid = 0;
+                               for (int j=1;j<branching;++j) {
+                                       float new_sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_,dcenters[j]);
+                                       if (sq_dist>new_sq_dist) {
+                                               new_centroid = j;
+                                               sq_dist = new_sq_dist;
+                                       }
+                               }
+                               if (sq_dist>radiuses[new_centroid]) {
+                                       radiuses[new_centroid] = sq_dist;
+                               }
+                               if (new_centroid != belongs_to[i]) {
+                                       count[belongs_to[i]]--;
+                                       count[new_centroid]++;
+                                       belongs_to[i] = new_centroid;
+
+                                       converged = false;
+                               }
+                       }
+
+                       for (int i=0;i<branching;++i) {
+                               // if one cluster converges to an empty cluster,
+                               // move an element into that cluster
+                               if (count[i]==0) {
+                                       int j = (i+1)%branching;
+                                       while (count[j]<=1) {
+                                               j = (j+1)%branching;
+                                       }
+
+                                       for (int k=0;k<indices_length;++k) {
+                                               if (belongs_to[k]==j) {
+                                                       belongs_to[k] = i;
+                                                       count[j]--;
+                                                       count[i]++;
+                                                       break;
+                                               }
+                                       }
+                                       converged = false;
+                               }
+                       }
+
+               }
+
+        float** centers = new float*[branching];
+
+        for (int i=0; i<branching; ++i) {
+                       centers[i] = new float[veclen_];
+                       memoryCounter += veclen_*sizeof(float);
+            for (int k=0; k<veclen_; ++k) {
+                centers[i][k] = (float)dcenters[i][k];
+            }
+               }
+
+
+               // compute kmeans clustering for each of the resulting clusters
+               node->childs = pool.allocate<KMeansNode>(branching);
+               int start = 0;
+               int end = start;
+               for (int c=0;c<branching;++c) {
+                       int s = count[c];
+
+                       float variance = 0;
+                       float mean_radius =0;
+                       for (int i=0;i<indices_length;++i) {
+                               if (belongs_to[i]==c) {
+                                       float d = flann_dist(dataset[indices[i]],dataset[indices[i]]+veclen_,zero);
+                                       variance += d;
+                                       mean_radius += sqrt(d);
+                                       swap(indices[i],indices[end]);
+                                       swap(belongs_to[i],belongs_to[end]);
+                                       end++;
+                               }
+                       }
+                       variance /= s;
+                       mean_radius /= s;
+                       variance -= flann_dist(centers[c],centers[c]+veclen_,zero);
+
+                       node->childs[c] = pool.allocate<KMeansNodeSt>();
+                       node->childs[c]->radius = radiuses[c];
+                       node->childs[c]->pivot = centers[c];
+                       node->childs[c]->variance = variance;
+                       node->childs[c]->mean_radius = mean_radius;
+                       node->childs[c]->indices = NULL;
+                       computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
+                       start=end;
+               }
+
+               delete[] centers;
+               delete[] radiuses;
+               delete[] count;
+               delete[] belongs_to;
+       }
+
+
+
+       /**
+        * Performs one descent in the hierarchical k-means tree. The branches not
+        * visited are stored in a priority queue.
+     *
+     * Params:
+     *      node = node to explore
+     *      result = container for the k-nearest neighbors found
+     *      vec = query points
+     *      checks = how many points in the dataset have been checked so far
+     *      maxChecks = maximum dataset points to checks
+     */
+
+
+       void findNN(KMeansNode node, ResultSet& result, const float* vec, int& checks, int maxChecks)
+       {
+               // Ignore those clusters that are too far away
+               {
+                       float bsq = flann_dist(vec, vec+veclen_, node->pivot);
+                       float rsq = node->radius;
+                       float wsq = result.worstDist();
+
+                       float val = bsq-rsq-wsq;
+                       float val2 = val*val-4*rsq*wsq;
+
+                       //if (val>0) {
+                       if (val>0 && val2>0) {
+                               return;
+                       }
+               }
+
+               if (node->childs==NULL) {
+            if (checks>=maxChecks) {
+                if (result.full()) return;
+            }
+            checks += node->size;
+                       for (int i=0;i<node->size;++i) {
+                               result.addPoint(dataset[node->indices[i]], node->indices[i]);
+                       }
+               }
+               else {
+                       float* domain_distances = new float[branching];
+                       int closest_center = exploreNodeBranches(node, vec, domain_distances);
+                       delete[] domain_distances;
+                       findNN(node->childs[closest_center],result,vec, checks, maxChecks);
+               }
+       }
+
+       /**
+        * Helper function that computes the nearest childs of a node to a given query point.
+        * Params:
+        *     node = the node
+        *     q = the query point
+        *     distances = array with the distances to each child node.
+        * Returns:
+        */
+       int exploreNodeBranches(KMeansNode node, const float* q, float* domain_distances)
+       {
+
+               int best_index = 0;
+               domain_distances[best_index] = flann_dist(q,q+veclen_,node->childs[best_index]->pivot);
+               for (int i=1;i<branching;++i) {
+                       domain_distances[i] = flann_dist(q,q+veclen_,node->childs[i]->pivot);
+                       if (domain_distances[i]<domain_distances[best_index]) {
+                               best_index = i;
+                       }
+               }
+
+//             float* best_center = node->childs[best_index]->pivot;
+               for (int i=0;i<branching;++i) {
+                       if (i != best_index) {
+                               domain_distances[i] -= cb_index*node->childs[i]->variance;
+
+//                             float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
+//                             if (domain_distances[i]<dist_to_border) {
+//                                     domain_distances[i] = dist_to_border;
+//                             }
+                               heap->insert(BranchSt::make_branch(node->childs[i],domain_distances[i]));
+                       }
+               }
+
+               return best_index;
+       }
+
+
+       /**
+        * Function the performs exact nearest neighbor search by traversing the entire tree.
+        */
+       void findExactNN(KMeansNode node, ResultSet& result, const float* vec)
+       {
+               // Ignore those clusters that are too far away
+               {
+                       float bsq = flann_dist(vec, vec+veclen_, node->pivot);
+                       float rsq = node->radius;
+                       float wsq = result.worstDist();
+
+                       float val = bsq-rsq-wsq;
+                       float val2 = val*val-4*rsq*wsq;
+
+       //              if (val>0) {
+                       if (val>0 && val2>0) {
+                               return;
+                       }
+               }
+
+
+               if (node->childs==NULL) {
+                       for (int i=0;i<node->size;++i) {
+                               result.addPoint(dataset[node->indices[i]], node->indices[i]);
+                       }
+               }
+               else {
+                       int* sort_indices = new int[branching];
+
+                       getCenterOrdering(node, vec, sort_indices);
+
+                       for (int i=0; i<branching; ++i) {
+                               findExactNN(node->childs[sort_indices[i]],result,vec);
+                       }
+
+                       delete[] sort_indices;
+               }
+       }
+
+
+       /**
+        * Helper function.
+        *
+        * I computes the order in which to traverse the child nodes of a particular node.
+        */
+       void getCenterOrdering(KMeansNode node, const float* q, int* sort_indices)
+       {
+               float* domain_distances = new float[branching];
+               for (int i=0;i<branching;++i) {
+                       float dist = flann_dist(q, q+veclen_, node->childs[i]->pivot);
+
+                       int j=0;
+                       while (domain_distances[j]<dist && j<i) j++;
+                       for (int k=i;k>j;--k) {
+                               domain_distances[k] = domain_distances[k-1];
+                               sort_indices[k] = sort_indices[k-1];
+                       }
+                       domain_distances[j] = dist;
+                       sort_indices[j] = i;
+               }
+               delete[] domain_distances;
+       }
+
+       /**
+        * Method that computes the squared distance from the query point q
+        * from inside region with center c to the border between this
+        * region and the region with center p
+        */
+       float getDistanceToBorder(float* p, float* c, float* q)
+       {
+               float sum = 0;
+               float sum2 = 0;
+
+               for (int i=0;i<veclen_; ++i) {
+                       float t = c[i]-p[i];
+                       sum += t*(q[i]-(c[i]+p[i])/2);
+                       sum2 += t*t;
+               }
+
+               return sum*sum/sum2;
+       }
+
+
+       /**
+        * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
+        * the overall variance of the clustering.
+        * Params:
+        *     root = root node
+        *     clusters = array with clusters centers (return value)
+        *     varianceValue = variance of the clustering (return value)
+        * Returns:
+        */
+       int getMinVarianceClusters(KMeansNode root, KMeansNode* clusters, int clusters_length, float& varianceValue)
+       {
+               int clusterCount = 1;
+               clusters[0] = root;
+
+               float meanVariance = root->variance*root->size;
+
+               while (clusterCount<clusters_length) {
+                       float minVariance = numeric_limits<float>::max();
+                       int splitIndex = -1;
+
+                       for (int i=0;i<clusterCount;++i) {
+                               if (clusters[i]->childs != NULL) {
+
+                                       float variance = meanVariance - clusters[i]->variance*clusters[i]->size;
+
+                                       for (int j=0;j<branching;++j) {
+                                               variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
+                                       }
+                                       if (variance<minVariance) {
+                                               minVariance = variance;
+                                               splitIndex = i;
+                                       }
+                               }
+                       }
+
+                       if (splitIndex==-1) break;
+                       if ( (branching+clusterCount-1) > clusters_length) break;
+
+                       meanVariance = minVariance;
+
+                       // split node
+                       KMeansNode toSplit = clusters[splitIndex];
+                       clusters[splitIndex] = toSplit->childs[0];
+                       for (int i=1;i<branching;++i) {
+                               clusters[clusterCount++] = toSplit->childs[i];
+                       }
+               }
+
+               varianceValue = meanVariance/root->size;
+               return clusterCount;
+       }
+};
+
+
+
+//register_index(KMEANS,KMeansTree)
+
+}
+
+#endif //KMEANSTREE_H