first commit
[blok] / Box2D / Source / Dynamics / Joints / b2DistanceJoint.cpp
diff --git a/Box2D/Source/Dynamics/Joints/b2DistanceJoint.cpp b/Box2D/Source/Dynamics/Joints/b2DistanceJoint.cpp
new file mode 100644 (file)
index 0000000..a164ab7
--- /dev/null
@@ -0,0 +1,206 @@
+/*
+* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
+*
+* This software is provided 'as-is', without any express or implied
+* warranty.  In no event will the authors be held liable for any damages
+* arising from the use of this software.
+* Permission is granted to anyone to use this software for any purpose,
+* including commercial applications, and to alter it and redistribute it
+* freely, subject to the following restrictions:
+* 1. The origin of this software must not be misrepresented; you must not
+* claim that you wrote the original software. If you use this software
+* in a product, an acknowledgment in the product documentation would be
+* appreciated but is not required.
+* 2. Altered source versions must be plainly marked as such, and must not be
+* misrepresented as being the original software.
+* 3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "b2DistanceJoint.h"
+#include "../b2Body.h"
+#include "../b2World.h"
+
+// 1-D constrained system
+// m (v2 - v1) = lambda
+// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
+// x2 = x1 + h * v2
+
+// 1-D mass-damper-spring system
+// m (v2 - v1) + h * d * v2 + h * k * 
+
+// C = norm(p2 - p1) - L
+// u = (p2 - p1) / norm(p2 - p1)
+// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
+// J = [-u -cross(r1, u) u cross(r2, u)]
+// K = J * invM * JT
+//   = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
+
+void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
+                                                                       const b2Vec2& anchor1, const b2Vec2& anchor2)
+{
+       body1 = b1;
+       body2 = b2;
+       localAnchor1 = body1->GetLocalPoint(anchor1);
+       localAnchor2 = body2->GetLocalPoint(anchor2);
+       b2Vec2 d = anchor2 - anchor1;
+       length = d.Length();
+}
+
+
+b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
+: b2Joint(def)
+{
+       m_localAnchor1 = def->localAnchor1;
+       m_localAnchor2 = def->localAnchor2;
+       m_length = def->length;
+       m_frequencyHz = def->frequencyHz;
+       m_dampingRatio = def->dampingRatio;
+       m_impulse = 0.0f;
+       m_gamma = 0.0f;
+       m_bias = 0.0f;
+       m_inv_dt = 0.0f;
+}
+
+void b2DistanceJoint::InitVelocityConstraints(const b2TimeStep& step)
+{
+       m_inv_dt = step.inv_dt;
+
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       // Compute the effective mass matrix.
+       b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+       b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+       m_u = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
+
+       // Handle singularity.
+       float32 length = m_u.Length();
+       if (length > b2_linearSlop)
+       {
+               m_u *= 1.0f / length;
+       }
+       else
+       {
+               m_u.Set(0.0f, 0.0f);
+       }
+
+       float32 cr1u = b2Cross(r1, m_u);
+       float32 cr2u = b2Cross(r2, m_u);
+       float32 invMass = b1->m_invMass + b1->m_invI * cr1u * cr1u + b2->m_invMass + b2->m_invI * cr2u * cr2u;
+       b2Assert(invMass > B2_FLT_EPSILON);
+       m_mass = 1.0f / invMass;
+
+       if (m_frequencyHz > 0.0f)
+       {
+               float32 C = length - m_length;
+
+               // Frequency
+               float32 omega = 2.0f * b2_pi * m_frequencyHz;
+
+               // Damping coefficient
+               float32 d = 2.0f * m_mass * m_dampingRatio * omega;
+
+               // Spring stiffness
+               float32 k = m_mass * omega * omega;
+
+               // magic formulas
+               m_gamma = 1.0f / (step.dt * (d + step.dt * k));
+               m_bias = C * step.dt * k * m_gamma;
+
+               m_mass = 1.0f / (invMass + m_gamma);
+       }
+
+       if (step.warmStarting)
+       {
+               m_impulse *= step.dtRatio;
+               b2Vec2 P = m_impulse * m_u;
+               b1->m_linearVelocity -= b1->m_invMass * P;
+               b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
+               b2->m_linearVelocity += b2->m_invMass * P;
+               b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
+       }
+       else
+       {
+               m_impulse = 0.0f;
+       }
+}
+
+void b2DistanceJoint::SolveVelocityConstraints(const b2TimeStep& step)
+{
+       B2_NOT_USED(step);
+
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+       b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+
+       // Cdot = dot(u, v + cross(w, r))
+       b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
+       b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
+       float32 Cdot = b2Dot(m_u, v2 - v1);
+
+       float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse);
+       m_impulse += impulse;
+
+       b2Vec2 P = impulse * m_u;
+       b1->m_linearVelocity -= b1->m_invMass * P;
+       b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
+       b2->m_linearVelocity += b2->m_invMass * P;
+       b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
+}
+
+bool b2DistanceJoint::SolvePositionConstraints()
+{
+       if (m_frequencyHz > 0.0f)
+       {
+               return true;
+       }
+
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+       b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+
+       b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
+
+       float32 length = d.Normalize();
+       float32 C = length - m_length;
+       C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);
+
+       float32 impulse = -m_mass * C;
+       m_u = d;
+       b2Vec2 P = impulse * m_u;
+
+       b1->m_sweep.c -= b1->m_invMass * P;
+       b1->m_sweep.a -= b1->m_invI * b2Cross(r1, P);
+       b2->m_sweep.c += b2->m_invMass * P;
+       b2->m_sweep.a += b2->m_invI * b2Cross(r2, P);
+
+       b1->SynchronizeTransform();
+       b2->SynchronizeTransform();
+
+       return b2Abs(C) < b2_linearSlop;
+}
+
+b2Vec2 b2DistanceJoint::GetAnchor1() const
+{
+       return m_body1->GetWorldPoint(m_localAnchor1);
+}
+
+b2Vec2 b2DistanceJoint::GetAnchor2() const
+{
+       return m_body2->GetWorldPoint(m_localAnchor2);
+}
+
+b2Vec2 b2DistanceJoint::GetReactionForce() const
+{
+       b2Vec2 F = (m_inv_dt * m_impulse) * m_u;
+       return F;
+}
+
+float32 b2DistanceJoint::GetReactionTorque() const
+{
+       return 0.0f;
+}