Update to 2.0.0 tree from current Fremantle build
[opencv] / src / cvaux / decomppoly.cpp
diff --git a/src/cvaux/decomppoly.cpp b/src/cvaux/decomppoly.cpp
new file mode 100644 (file)
index 0000000..713a378
--- /dev/null
@@ -0,0 +1,629 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "_cvaux.h"
+
+#if 0
+
+#include <malloc.h>
+//#include "decomppoly.h"
+
+#define ZERO_CLOSE 0.00001f
+#define ONE_CLOSE  0.99999f
+
+#define CHECK_COLLINEARITY(vec1_x,vec1_y,vec2_x,vec2_y) \
+    if( vec1_x == 0 ) {                                 \
+        if( vec1_y * vec2_y > 0 ) {                     \
+            return 0;                                   \
+        }                                               \
+    }                                                   \
+    else {                                              \
+        if( vec1_x * vec2_x > 0 ) {                     \
+            return 0;                                   \
+        }                                               \
+    }
+
+// determines if edge number one lies in counterclockwise
+//  earlier than edge number two
+inline int  icvIsFirstEdgeClosier( int x0,
+                                   int y0,
+                                   int x0_end,
+                                   int y0_end,
+                                   int x1_end,
+                                   int y1_end,
+                                   int x2_end,
+                                   int y2_end )
+{
+    int mult, mult1, mult2;
+    int vec0_x, vec0_y;
+    int vec1_x, vec1_y;
+    int vec2_x, vec2_y;
+
+    vec0_x = x0_end - x0;
+    vec0_y = y0_end - y0;
+    vec1_x = x1_end - x0;
+    vec1_y = y1_end - y0;
+    vec2_x = x2_end - x0;
+    vec2_y = y2_end - y0;
+
+    mult1 = vec1_x * vec0_y - vec0_x * vec1_y;
+    mult2 = vec2_x * vec0_y - vec0_x * vec2_y;
+
+    if( mult1 == 0 ) {
+        CHECK_COLLINEARITY( vec0_x, vec0_y, vec1_x, vec1_y );
+    }
+    if( mult2 == 0 ) {
+        CHECK_COLLINEARITY( vec0_x, vec0_y, vec2_x, vec2_y );
+    }
+    if( mult1 > 0 && mult2 < 0 ) {
+        return 1;
+    }
+    if( mult1 < 0 && mult2 > 0 ) {
+        return -1;
+    }
+
+    mult = vec1_x * vec2_y - vec2_x * vec1_y;
+    if( mult == 0 ) {
+        CHECK_COLLINEARITY( vec1_x, vec1_y, vec2_x, vec2_y );
+    }
+
+    if( mult1 > 0 )
+    {
+        if( mult > 0 ) {
+            return -1;
+        }
+        else {
+            return 1;
+        }
+    } // if( mult1 > 0 )
+    else
+    {
+        if( mult1 != 0 ) {
+            if( mult > 0 ) {
+                return 1;
+            }
+            else {
+                return -1;
+            }
+        } // if( mult1 != 0 )
+        else {
+            if( mult2 > 0 ) {
+                return -1;
+            }
+            else {
+                return 1;
+            }
+        } // if( mult1 != 0 ) else
+
+    } // if( mult1 > 0 ) else
+
+} // icvIsFirstEdgeClosier
+
+bool icvEarCutTriangulation( CvPoint* contour,
+                               int num,
+                               int* outEdges,
+                               int* numEdges )
+{
+    int i;
+    int notFoundFlag = 0;
+    int begIndex = -1;
+    int isInternal;
+    int currentNum = num;
+    int index1, index2, index3;
+    int ix0, iy0, ix1, iy1, ix2, iy2;
+    int x1, y1, x2, y2, x3, y3;
+    int dx1, dy1, dx2, dy2;
+    int* pointExist = ( int* )0;
+    int det, det1, det2;
+    float t1, t2;
+
+    (*numEdges) = 0;
+
+    if( num <= 2 ) {
+        return false;
+    }
+
+    pointExist = ( int* )malloc( num * sizeof( int ) );
+
+    for( i = 0; i < num; i ++ ) {
+        pointExist[i] = 1;
+    }
+
+    for( i = 0; i < num; i ++ ) {
+        outEdges[ (*numEdges) * 2 ] = i;
+        if( i != num - 1 ) {
+            outEdges[ (*numEdges) * 2 + 1 ] = i + 1;
+        }
+        else {
+            outEdges[ (*numEdges) * 2 + 1 ] = 0;
+        }
+        (*numEdges) ++;
+    } // for( i = 0; i < num; i ++ )
+
+    // initializing data before while cycle
+    index1 = 0;
+    index2 = 1;
+    index3 = 2;
+    x1 = contour[ index1 ].x;
+    y1 = contour[ index1 ].y;
+    x2 = contour[ index2 ].x;
+    y2 = contour[ index2 ].y;
+    x3 = contour[ index3 ].x;
+    y3 = contour[ index3 ].y;
+
+    while( currentNum > 3 )
+    {
+        dx1 = x2 - x1;
+        dy1 = y2 - y1;
+        dx2 = x3 - x2;
+        dy2 = y3 - y2;
+        if( dx1 * dy2 - dx2 * dy1 < 0 ) // convex condition
+        {
+            // checking for noncrossing edge
+            ix1 = x3 - x1;
+            iy1 = y3 - y1;
+            isInternal = 1;
+            for( i = 0; i < num; i ++ )
+            {
+                if( i != num - 1 ) {
+                    ix2 = contour[ i + 1 ].x - contour[ i ].x;
+                    iy2 = contour[ i + 1 ].y - contour[ i ].y;
+                }
+                else {
+                    ix2 = contour[ 0 ].x - contour[ i ].x;
+                    iy2 = contour[ 0 ].y - contour[ i ].y;
+                }
+                ix0 = contour[ i ].x - x1;
+                iy0 = contour[ i ].y - y1;
+
+                det  = ix2 * iy1 - ix1 * iy2;
+                det1 = ix2 * iy0 - ix0 * iy2;
+                if( det != 0.0f )
+                {
+                    t1 = ( ( float )( det1 ) ) / det;
+                    if( t1 > ZERO_CLOSE && t1 < ONE_CLOSE )
+                    {
+                        det2 = ix1 * iy0 - ix0 * iy1;
+                        t2 = ( ( float )( det2 ) ) / det;
+                        if( t2 > ZERO_CLOSE && t2 < ONE_CLOSE ) {
+                            isInternal = 0;
+                        }
+    
+                    } // if( t1 > ZERO_CLOSE && t1 < ONE_CLOSE )
+
+                } // if( det != 0.0f )
+
+            } // for( i = 0; i < (*numEdges); i ++ )
+
+            if( isInternal )
+            {
+                // this edge is internal
+                notFoundFlag = 0;
+                outEdges[ (*numEdges) * 2     ] = index1;
+                outEdges[ (*numEdges) * 2 + 1 ] = index3;
+                (*numEdges) ++;
+                pointExist[ index2 ] = 0;
+                index2 = index3;
+                x2 = x3;
+                y2 = y3;
+                currentNum --;
+                if( currentNum >= 3 ) {
+                    do {
+                        index3 ++;
+                        if( index3 == num ) {
+                            index3 = 0;
+                        }
+                    } while( !pointExist[ index3 ] );
+                    x3 = contour[ index3 ].x;
+                    y3 = contour[ index3 ].y;
+                } // if( currentNum >= 3 )
+
+            } // if( isInternal )
+            else {
+                // this edge intersects some other initial edges
+                if( !notFoundFlag ) {
+                    notFoundFlag = 1;
+                    begIndex = index1;
+                }
+                index1 = index2;
+                x1 = x2;
+                y1 = y2;
+                index2 = index3;
+                x2 = x3;
+                y2 = y3;
+                do {
+                    index3 ++;
+                    if( index3 == num ) {
+                        index3 = 0;
+                    }
+                    if( index3 == begIndex ) {
+                        if( pointExist ) {
+                            free( pointExist );
+                        }
+                        return false;
+                    }
+                } while( !pointExist[ index3 ] );
+                x3 = contour[ index3 ].x;
+                y3 = contour[ index3 ].y;
+            } // if( isInternal ) else
+
+        } // if( dx1 * dy2 - dx2 * dy1 < 0 )
+        else
+        {
+            if( !notFoundFlag ) {
+                notFoundFlag = 1;
+                begIndex = index1;
+            }
+            index1 = index2;
+            x1 = x2;
+            y1 = y2;
+            index2 = index3;
+            x2 = x3;
+            y2 = y3;
+            do {
+                index3 ++;
+                if( index3 == num ) {
+                    index3 = 0;
+                }
+                if( index3 == begIndex ) {
+                    if( pointExist ) {
+                        free( pointExist );
+                    }
+                    return false;
+                }
+            } while( !pointExist[ index3 ] );
+            x3 = contour[ index3 ].x;
+            y3 = contour[ index3 ].y;
+        } // if( dx1 * dy2 - dx2 * dy1 < 0 ) else
+
+    } // while( currentNum > 3 )
+
+    if( pointExist ) {
+        free( pointExist );
+    }
+
+    return true;
+
+} // icvEarCutTriangulation
+
+inline bool icvFindTwoNeighbourEdges( CvPoint* contour,
+                                      int* edges,
+                                      int numEdges,
+                                      int vtxIdx,
+                                      int mainEdgeIdx,
+                                      int* leftEdgeIdx,
+                                      int* rightEdgeIdx )
+{
+    int i;
+    int compRes;
+    int vec0_x, vec0_y;
+    int x0, y0, x0_end, y0_end;
+    int x1_left = 0, y1_left = 0, x1_right = 0, y1_right = 0, x2, y2;
+
+    (*leftEdgeIdx)  = -1;
+    (*rightEdgeIdx) = -1;
+
+    if( edges[ mainEdgeIdx * 2 ] == vtxIdx ) {
+        x0 = contour[ vtxIdx ].x;
+        y0 = contour[ vtxIdx ].y;
+        x0_end = contour[ edges[ mainEdgeIdx * 2 + 1 ] ].x;
+        y0_end = contour[ edges[ mainEdgeIdx * 2 + 1 ] ].y;
+        vec0_x = x0_end - x0;
+        vec0_y = y0_end - y0;
+    }
+    else {
+        //x0 = contour[ edges[ mainEdgeIdx * 2 ] ].x;
+        //y0 = contour[ edges[ mainEdgeIdx * 2 ] ].y;
+        //x0_end = contour[ vtxIdx ].x;
+        //y0_end = contour[ vtxIdx ].y;
+        x0 = contour[ vtxIdx ].x;
+        y0 = contour[ vtxIdx ].y;
+        x0_end = contour[ edges[ mainEdgeIdx * 2 ] ].x;
+        y0_end = contour[ edges[ mainEdgeIdx * 2 ] ].y;
+        vec0_x = x0_end - x0;
+        vec0_y = y0_end - y0;
+    }
+
+    for( i = 0; i < numEdges; i ++ )
+    {
+        if( ( i != mainEdgeIdx ) &&
+            ( edges[ i * 2 ] == vtxIdx || edges[ i * 2 + 1 ] == vtxIdx ) )
+        {
+            if( (*leftEdgeIdx) == -1 )
+            {
+                (*leftEdgeIdx) = (*rightEdgeIdx) = i;
+                if( edges[ i * 2 ] == vtxIdx ) {
+                    x1_left = x1_right = contour[ edges[ i * 2 + 1 ] ].x;
+                    y1_left = y1_right = contour[ edges[ i * 2 + 1 ] ].y;
+                }
+                else {
+                    x1_left = x1_right = contour[ edges[ i * 2 ] ].x;
+                    y1_left = y1_right = contour[ edges[ i * 2 ] ].y;
+                }
+
+            } // if( (*leftEdgeIdx) == -1 )
+            else
+            {
+                if( edges[ i * 2 ] == vtxIdx ) {
+                    x2 = contour[ edges[ i * 2 + 1 ] ].x;
+                    y2 = contour[ edges[ i * 2 + 1 ] ].y;
+                }
+                else {
+                    x2 = contour[ edges[ i * 2 ] ].x;
+                    y2 = contour[ edges[ i * 2 ] ].y;
+                }
+
+                compRes = icvIsFirstEdgeClosier( x0,
+                    y0, x0_end, y0_end, x1_left, y1_left, x2, y2 );
+                if( compRes == 0 ) {
+                    return false;
+                }
+                if( compRes == -1 ) {
+                    (*leftEdgeIdx) = i;
+                    x1_left = x2;
+                    y1_left = y2;
+                } // if( compRes == -1 )
+                else {
+                    compRes = icvIsFirstEdgeClosier( x0,
+                        y0, x0_end, y0_end, x1_right, y1_right, x2, y2 );
+                    if( compRes == 0 ) {
+                        return false;
+                    }
+                    if( compRes == 1 ) {
+                        (*rightEdgeIdx) = i;
+                        x1_right = x2;
+                        y1_right = y2;
+                    }
+
+                } // if( compRes == -1 ) else
+
+            } // if( (*leftEdgeIdx) == -1 ) else
+
+        } // if( ( i != mainEdgesIdx ) && ...
+
+    } // for( i = 0; i < numEdges; i ++ )
+
+    return true;
+
+} // icvFindTwoNeighbourEdges
+
+bool icvFindReferences( CvPoint* contour,
+                        int num,
+                        int* outEdges,
+                        int* refer,
+                        int* numEdges )
+{
+    int i;
+    int currPntIdx;
+    int leftEdgeIdx, rightEdgeIdx;
+
+    if( icvEarCutTriangulation( contour, num, outEdges, numEdges ) )
+    {
+        for( i = 0; i < (*numEdges); i ++ )
+        {
+            refer[ i * 4     ] = -1;
+            refer[ i * 4 + 1 ] = -1;
+            refer[ i * 4 + 2 ] = -1;
+            refer[ i * 4 + 3 ] = -1;
+        } // for( i = 0; i < (*numEdges); i ++ )
+
+        for( i = 0; i < (*numEdges); i ++ )
+        {
+            currPntIdx = outEdges[ i * 2 ];
+            if( !icvFindTwoNeighbourEdges( contour,
+                outEdges, (*numEdges), currPntIdx,
+                i, &leftEdgeIdx, &rightEdgeIdx ) )
+            {
+                return false;
+            } // if( !icvFindTwoNeighbourEdges( contour, ...
+            else
+            {
+                if( outEdges[ leftEdgeIdx * 2 ] == currPntIdx ) {
+                    if( refer[ i * 4     ] == -1 ) {
+                        refer[ i * 4     ] = ( leftEdgeIdx << 2 );
+                    }
+                }
+                else {
+                    if( refer[ i * 4     ] == -1 ) {
+                        refer[ i * 4     ] = ( leftEdgeIdx << 2 ) | 2;
+                    }
+                }
+                if( outEdges[ rightEdgeIdx * 2 ] == currPntIdx ) {
+                    if( refer[ i * 4 + 1 ] == -1 ) {
+                        refer[ i * 4 + 1 ] = ( rightEdgeIdx << 2 ) | 3;
+                    }
+                }
+                else {
+                    if( refer[ i * 4 + 1 ] == -1 ) {
+                        refer[ i * 4 + 1 ] = ( rightEdgeIdx << 2 ) | 1;
+                    }
+                }
+
+            } // if( !icvFindTwoNeighbourEdges( contour, ... ) else
+
+            currPntIdx = outEdges[ i * 2 + 1 ];
+            if( i == 18 ) {
+                i = i;
+            }
+            if( !icvFindTwoNeighbourEdges( contour,
+                outEdges, (*numEdges), currPntIdx,
+                i, &leftEdgeIdx, &rightEdgeIdx ) )
+            {
+                return false;
+            } // if( !icvFindTwoNeighbourEdges( contour, ...
+            else
+            {
+                if( outEdges[ leftEdgeIdx * 2 ] == currPntIdx ) {
+                    if( refer[ i * 4 + 3 ] == -1 ) {
+                        refer[ i * 4 + 3 ] = ( leftEdgeIdx << 2 );
+                    }
+                }
+                else {
+                    if( refer[ i * 4 + 3 ] == -1 ) {
+                        refer[ i * 4 + 3 ] = ( leftEdgeIdx << 2 ) | 2;
+                    }
+                }
+                if( outEdges[ rightEdgeIdx * 2 ] == currPntIdx ) {
+                    if( refer[ i * 4 + 2 ] == -1 ) {
+                        refer[ i * 4 + 2 ] = ( rightEdgeIdx << 2 ) | 3;
+                    }
+                }
+                else {
+                    if( refer[ i * 4 + 2 ] == -1 ) {
+                        refer[ i * 4 + 2 ] = ( rightEdgeIdx << 2 ) | 1;
+                    }
+                }
+
+            } // if( !icvFindTwoNeighbourEdges( contour, ... ) else
+
+        } // for( i = 0; i < (*numEdges); i ++ )
+
+    } // if( icvEarCutTriangulation( contour, num, outEdges, numEdges ) )
+    else {
+        return false;
+    } // if( icvEarCutTriangulation( contour, num, outEdges, ... ) else
+
+    return true;
+
+} // icvFindReferences
+
+void cvDecompPoly( CvContour* cont,
+                      CvSubdiv2D** subdiv,
+                      CvMemStorage* storage )
+{
+    int*    memory;
+    CvPoint*    contour;
+    int*        outEdges;
+    int*        refer;
+    CvSubdiv2DPoint**   pntsPtrs;
+    CvQuadEdge2D**      edgesPtrs;
+    int numVtx;
+    int numEdges;
+    int i;
+    CvSeqReader reader;
+    CvPoint2D32f pnt;
+    CvQuadEdge2D* quadEdge;
+    
+    numVtx = cont -> total;
+    if( numVtx < 3 ) {
+        return;
+    }
+
+    *subdiv = ( CvSubdiv2D* )0;
+
+    memory = ( int* )malloc( sizeof( int ) * ( numVtx * 2
+        + numVtx * numVtx * 2 * 5 )
+        + sizeof( CvQuadEdge2D* ) * ( numVtx * numVtx )
+        + sizeof( CvSubdiv2DPoint* ) * ( numVtx * 2 ) );
+    contour     = ( CvPoint* )memory;
+    outEdges    = ( int* )( contour + numVtx );
+    refer       = outEdges + numVtx * numVtx * 2;
+    edgesPtrs   = ( CvQuadEdge2D** )( refer + numVtx * numVtx * 4 );
+    pntsPtrs    = ( CvSubdiv2DPoint** )( edgesPtrs + numVtx * numVtx );
+
+    cvStartReadSeq( ( CvSeq* )cont, &reader, 0 );
+    for( i = 0; i < numVtx; i ++ )
+    {
+        CV_READ_SEQ_ELEM( (contour[ i ]), reader );
+    } // for( i = 0; i < numVtx; i ++ )
+
+    if( !icvFindReferences( contour, numVtx, outEdges, refer, &numEdges ) )
+    {
+        free( memory );
+        return;
+    } // if( !icvFindReferences( contour, numVtx, outEdges, refer, ...
+
+    *subdiv = cvCreateSubdiv2D( CV_SEQ_KIND_SUBDIV2D,
+                                sizeof( CvSubdiv2D ),
+                                sizeof( CvSubdiv2DPoint ),
+                                sizeof( CvQuadEdge2D ),
+                                storage );
+
+    for( i = 0; i < numVtx; i ++ )
+    {
+        pnt.x = ( float )contour[ i ].x;
+        pnt.y = ( float )contour[ i ].y;
+        pntsPtrs[ i ] = cvSubdiv2DAddPoint( *subdiv, pnt, 0 );
+    } // for( i = 0; i < numVtx; i ++ )
+
+    for( i = 0; i < numEdges; i ++ )
+    {
+        edgesPtrs[ i ] = ( CvQuadEdge2D* )
+            ( cvSubdiv2DMakeEdge( *subdiv ) & 0xfffffffc );
+    } // for( i = 0; i < numEdges; i ++ )
+
+    for( i = 0; i < numEdges; i ++ )
+    {
+        quadEdge = edgesPtrs[ i ];
+        quadEdge -> next[ 0 ] =
+            ( ( CvSubdiv2DEdge )edgesPtrs[ refer[ i * 4     ] >> 2 ] )
+            | ( refer[ i * 4     ] & 3 );
+        quadEdge -> next[ 1 ] =
+            ( ( CvSubdiv2DEdge )edgesPtrs[ refer[ i * 4 + 1 ] >> 2 ] )
+            | ( refer[ i * 4 + 1 ] & 3 );
+        quadEdge -> next[ 2 ] =
+            ( ( CvSubdiv2DEdge )edgesPtrs[ refer[ i * 4 + 2 ] >> 2 ] )
+            | ( refer[ i * 4 + 2 ] & 3 );
+        quadEdge -> next[ 3 ] =
+            ( ( CvSubdiv2DEdge )edgesPtrs[ refer[ i * 4 + 3 ] >> 2 ] )
+            | ( refer[ i * 4 + 3 ] & 3 );
+        quadEdge -> pt[ 0 ] = pntsPtrs[ outEdges[ i * 2     ] ];
+        quadEdge -> pt[ 1 ] = ( CvSubdiv2DPoint* )0;
+        quadEdge -> pt[ 2 ] = pntsPtrs[ outEdges[ i * 2 + 1 ] ];
+        quadEdge -> pt[ 3 ] = ( CvSubdiv2DPoint* )0;
+    } // for( i = 0; i < numEdges; i ++ )
+
+    (*subdiv) -> topleft.x = ( float )cont -> rect.x;
+    (*subdiv) -> topleft.y = ( float )cont -> rect.y;
+    (*subdiv) -> bottomright.x =
+        ( float )( cont -> rect.x + cont -> rect.width );
+    (*subdiv) -> bottomright.y =
+        ( float )( cont -> rect.y + cont -> rect.height );
+
+    free( memory );
+    return;
+
+} // cvDecompPoly
+
+#endif
+
+// End of file decomppoly.cpp
+