Update to 2.0.0 tree from current Fremantle build
[opencv] / src / cvaux / cvhmm.cpp
diff --git a/src/cvaux/cvhmm.cpp b/src/cvaux/cvhmm.cpp
new file mode 100644 (file)
index 0000000..a6f1bc8
--- /dev/null
@@ -0,0 +1,1700 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "_cvaux.h"
+
+#define LN2PI 1.837877f
+#define BIG_FLT 1.e+10f
+
+
+#define _CV_ERGODIC 1
+#define _CV_CAUSAL 2
+
+#define _CV_LAST_STATE 1
+#define _CV_BEST_STATE 2  
+
+
+//*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: _cvCreateObsInfo
+//    Purpose: The function allocates memory for CvImgObsInfo structure 
+//             and its inner stuff
+//    Context:
+//    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
+//                num_hor_obs - number of horizontal observation vectors
+//                num_ver_obs - number of horizontal observation vectors
+//                obs_size - length of observation vector
+//
+//    Returns: error status
+//
+//    Notes:   
+//F*/      
+static CvStatus CV_STDCALL icvCreateObsInfo(  CvImgObsInfo** obs_info, 
+                                           CvSize num_obs, int obs_size )
+{
+    int total = num_obs.height * num_obs.width;
+    CvImgObsInfo* obs = (CvImgObsInfo*)cvAlloc( sizeof( CvImgObsInfo) );
+    
+    obs->obs_x = num_obs.width;
+    obs->obs_y = num_obs.height;
+
+    obs->obs = (float*)cvAlloc( total * obs_size * sizeof(float) );
+
+    obs->state = (int*)cvAlloc( 2 * total * sizeof(int) );
+    obs->mix = (int*)cvAlloc( total * sizeof(int) );  
+        
+    obs->obs_size = obs_size;
+
+    obs_info[0] = obs;
+    return CV_NO_ERR;
+}
+
+static CvStatus CV_STDCALL icvReleaseObsInfo( CvImgObsInfo** p_obs_info )
+{
+    CvImgObsInfo* obs_info = p_obs_info[0];
+
+    cvFree( &(obs_info->obs) );
+    cvFree( &(obs_info->mix) );
+    cvFree( &(obs_info->state) ); 
+    cvFree( &(obs_info) );
+
+    p_obs_info[0] = NULL;
+
+    return CV_NO_ERR;
+} 
+
+    
+//*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: icvCreate2DHMM
+//    Purpose: The function allocates memory for 2-dimensional embedded HMM model 
+//             and its inner stuff
+//    Context:
+//    Parameters: hmm - addres of pointer to CvEHMM structure
+//                state_number - array of hmm sizes (size of array == state_number[0]+1 )
+//                num_mix - number of gaussian mixtures in low-level HMM states 
+//                          size of array is defined by previous array values
+//                obs_size - length of observation vectors
+//
+//    Returns: error status
+//
+//    Notes: state_number[0] - number of states in external HMM.
+//           state_number[i] - number of states in embedded HMM
+//           
+//           example for face recognition: state_number = { 5 3 6 6 6 3 },
+//                                         length of num_mix array = 3+6+6+6+3 = 24//
+//
+//F*/
+static CvStatus CV_STDCALL icvCreate2DHMM( CvEHMM** this_hmm,
+                                         int* state_number, int* num_mix, int obs_size )
+{
+    int i;
+    int real_states = 0;
+
+    CvEHMMState* all_states;
+    CvEHMM* hmm;
+    int total_mix = 0;
+    float* pointers;
+
+    //compute total number of states of all level in 2d EHMM
+    for( i = 1; i <= state_number[0]; i++ )
+    {
+        real_states += state_number[i];
+    }
+
+    /* allocate memory for all hmms (from all levels) */
+    hmm = (CvEHMM*)cvAlloc( (state_number[0] + 1) * sizeof(CvEHMM) );
+    
+    /* set number of superstates */
+    hmm[0].num_states = state_number[0];
+    hmm[0].level = 1;
+        
+    /* allocate memory for all states */
+    all_states = (CvEHMMState *)cvAlloc( real_states * sizeof( CvEHMMState ) );
+
+    /* assign number of mixtures */
+    for( i = 0; i < real_states; i++ )
+    {
+        all_states[i].num_mix = num_mix[i];
+    }
+
+    /* compute size of inner of all real states */
+    for( i = 0; i < real_states; i++ )
+    {
+        total_mix += num_mix[i];
+    } 
+    /* allocate memory for states stuff */
+    pointers = (float*)cvAlloc( total_mix * (2/*for mu invvar */ * obs_size + 
+                                 2/*for weight and log_var_val*/ ) * sizeof( float) );
+    
+    /* organize memory */
+    for( i = 0; i < real_states; i++ )
+    {
+        all_states[i].mu      = pointers; pointers += num_mix[i] * obs_size;  
+        all_states[i].inv_var = pointers; pointers += num_mix[i] * obs_size;
+
+        all_states[i].log_var_val = pointers; pointers += num_mix[i];
+        all_states[i].weight      = pointers; pointers += num_mix[i];
+    }          
+    
+    /* set pointer to embedded hmm array */
+    hmm->u.ehmm = hmm + 1;
+    
+    for( i = 0; i < hmm[0].num_states; i++ )
+    {
+        hmm[i+1].u.state = all_states;
+        all_states += state_number[i+1];
+        hmm[i+1].num_states = state_number[i+1];
+    }                              
+    
+    for( i = 0; i <= state_number[0]; i++ )
+    {
+        hmm[i].transP = icvCreateMatrix_32f( hmm[i].num_states, hmm[i].num_states );
+        hmm[i].obsProb = NULL;
+        hmm[i].level = i ? 0 : 1;
+    }
+    
+    /* if all ok - return pointer */
+    *this_hmm = hmm;
+    return CV_NO_ERR;
+} 
+
+static CvStatus CV_STDCALL icvRelease2DHMM( CvEHMM** phmm )
+{
+    CvEHMM* hmm = phmm[0]; 
+    int i;
+    for( i = 0; i < hmm[0].num_states + 1; i++ )
+    {
+        icvDeleteMatrix( hmm[i].transP );
+    } 
+
+    if (hmm->obsProb != NULL)
+    {
+        int* tmp = ((int*)(hmm->obsProb)) - 3;
+        cvFree( &(tmp)  );
+    }
+
+    cvFree( &(hmm->u.ehmm->u.state->mu) );
+    cvFree( &(hmm->u.ehmm->u.state) );
+
+
+    /* free hmm structures */
+    cvFree( phmm );
+
+    phmm[0] = NULL;
+
+    return CV_NO_ERR;
+}     
+
+/* distance between 2 vectors */
+static float icvSquareDistance( CvVect32f v1, CvVect32f v2, int len )
+{
+    int i;
+    double dist0 = 0;
+    double dist1 = 0;
+
+    for( i = 0; i <= len - 4; i += 4 )
+    {
+        double t0 = v1[i] - v2[i];
+        double t1 = v1[i+1] - v2[i+1];
+        dist0 += t0*t0;
+        dist1 += t1*t1;
+
+        t0 = v1[i+2] - v2[i+2];
+        t1 = v1[i+3] - v2[i+3];
+        dist0 += t0*t0;
+        dist1 += t1*t1;
+    }
+
+    for( ; i < len; i++ )
+    {
+        double t0 = v1[i] - v2[i];
+        dist0 += t0*t0;
+    }
+
+    return (float)(dist0 + dist1);
+} 
+
+/*can be used in CHMM & DHMM */
+static CvStatus CV_STDCALL
+icvUniformImgSegm(  CvImgObsInfo* obs_info, CvEHMM* hmm )
+{
+#if 1
+    /* implementation is very bad */
+    int  i, j, counter = 0;
+    CvEHMMState* first_state;
+    float inv_x = 1.f/obs_info->obs_x;
+    float inv_y = 1.f/obs_info->obs_y;
+
+    /* check arguments */
+    if ( !obs_info || !hmm ) return CV_NULLPTR_ERR;
+
+    first_state = hmm->u.ehmm->u.state;
+            
+    for (i = 0; i < obs_info->obs_y; i++)
+    {
+        //bad line (division )
+        int superstate = (int)((i * hmm->num_states)*inv_y);/* /obs_info->obs_y; */
+        
+        int index = (int)(hmm->u.ehmm[superstate].u.state - first_state);
+
+        for (j = 0; j < obs_info->obs_x; j++, counter++)
+        {
+            int state = (int)((j * hmm->u.ehmm[superstate].num_states)* inv_x); /* / obs_info->obs_x; */
+            
+            obs_info->state[2 * counter] = superstate;
+            obs_info->state[2 * counter + 1] = state + index;
+        }
+    } 
+#else
+    //this is not ready yet
+
+    int i,j,k,m;
+    CvEHMMState* first_state = hmm->u.ehmm->u.state; 
+
+    /* check bad arguments */
+    if ( hmm->num_states > obs_info->obs_y ) return CV_BADSIZE_ERR;
+
+    //compute vertical subdivision
+    float row_per_state = (float)obs_info->obs_y / hmm->num_states;
+    float col_per_state[1024]; /* maximum 1024 superstates */
+    
+    //for every horizontal band compute subdivision
+    for( i = 0; i < hmm->num_states; i++ )
+    {
+        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+        col_per_state[i] = (float)obs_info->obs_x / ehmm->num_states;
+    }
+
+    //compute state bounds
+    int ss_bound[1024];
+    for( i = 0; i < hmm->num_states - 1; i++ )
+    {
+        ss_bound[i] = floor( row_per_state * ( i+1 ) );
+    }
+    ss_bound[hmm->num_states - 1] = obs_info->obs_y;
+
+    //work inside every superstate
+
+    int row = 0;
+
+    for( i = 0; i < hmm->num_states; i++ )
+    {
+        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+        int index = ehmm->u.state - first_state;
+
+        //calc distribution in superstate
+        int es_bound[1024];
+        for( j = 0; j < ehmm->num_states - 1; j++ )
+        {
+            es_bound[j] = floor( col_per_state[i] * ( j+1 ) );
+        }
+        es_bound[ehmm->num_states - 1] = obs_info->obs_x;
+
+        //assign states to first row of superstate
+        int col = 0;
+        for( j = 0; j < ehmm->num_states; j++ )
+        {
+            for( k = col; k < es_bound[j]; k++, col++ )
+            {
+                obs_info->state[row * obs_info->obs_x + 2 * k] = i;
+                obs_info->state[row * obs_info->obs_x + 2 * k + 1] = j + index;
+            }
+            col = es_bound[j]; 
+        }
+
+        //copy the same to other rows of superstate
+        for( m = row; m < ss_bound[i]; m++ )
+        {
+            memcpy( &(obs_info->state[m * obs_info->obs_x * 2]), 
+                    &(obs_info->state[row * obs_info->obs_x * 2]), obs_info->obs_x * 2 * sizeof(int) );
+        }
+
+        row = ss_bound[i];    
+    }   
+
+#endif
+
+    return CV_NO_ERR;
+}
+           
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: InitMixSegm
+//    Purpose: The function implements the mixture segmentation of the states of the
+//             embedded HMM
+//    Context: used with the Viterbi training of the embedded HMM
+//             Function uses K-Means algorithm for clustering
+//
+//    Parameters:  obs_info_array - array of pointers to image observations 
+//                 num_img - length of above array
+//                 hmm - pointer to HMM structure   
+//     
+//    Returns: error status
+//
+//    Notes: 
+//F*/
+static CvStatus CV_STDCALL
+icvInitMixSegm( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
+{                                      
+    int  k, i, j; 
+    int* num_samples; /* number of observations in every state */
+    int* counter;     /* array of counters for every state */
+    
+    int**  a_class;   /* for every state - characteristic array */
+    
+    CvVect32f** samples; /* for every state - pointer to observation vectors */
+    int***  samples_mix;   /* for every state - array of pointers to vectors mixtures */   
+    
+    CvTermCriteria criteria = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,
+                                              1000,    /* iter */
+                                              0.01f ); /* eps  */
+    
+    int total = 0;
+    
+    CvEHMMState* first_state = hmm->u.ehmm->u.state; 
+    
+    for( i = 0 ; i < hmm->num_states; i++ )
+    {
+        total += hmm->u.ehmm[i].num_states;
+    }                                  
+    
+    /* for every state integer is allocated - number of vectors in state */
+    num_samples = (int*)cvAlloc( total * sizeof(int) );
+    
+    /* integer counter is allocated for every state */
+    counter = (int*)cvAlloc( total * sizeof(int) );
+    
+    samples = (CvVect32f**)cvAlloc( total * sizeof(CvVect32f*) ); 
+    samples_mix = (int***)cvAlloc( total * sizeof(int**) ); 
+    
+    /* clear */
+    memset( num_samples, 0 , total*sizeof(int) );
+    memset( counter, 0 , total*sizeof(int) );
+    
+    
+    /* for every state the number of vectors which belong to it is computed (smth. like histogram) */
+    for (k = 0; k < num_img; k++)
+    {  
+        CvImgObsInfo* obs = obs_info_array[k];
+        int count = 0;
+        
+        for (i = 0; i < obs->obs_y; i++)
+        {
+            for (j = 0; j < obs->obs_x; j++, count++)
+            {
+                int state = obs->state[ 2 * count + 1];
+                num_samples[state] += 1;
+            }
+        }
+    } 
+    
+    /* for every state int* is allocated */
+    a_class = (int**)cvAlloc( total*sizeof(int*) );
+    
+    for (i = 0; i < total; i++)
+    {
+        a_class[i] = (int*)cvAlloc( num_samples[i] * sizeof(int) );
+        samples[i] = (CvVect32f*)cvAlloc( num_samples[i] * sizeof(CvVect32f) );
+        samples_mix[i] = (int**)cvAlloc( num_samples[i] * sizeof(int*) );
+    }
+    
+    /* for every state vectors which belong to state are gathered */
+    for (k = 0; k < num_img; k++)
+    {  
+        CvImgObsInfo* obs = obs_info_array[k];
+        int num_obs = ( obs->obs_x ) * ( obs->obs_y );
+        float* vector = obs->obs;
+
+        for (i = 0; i < num_obs; i++, vector+=obs->obs_size )
+        {
+            int state = obs->state[2*i+1];
+            
+            samples[state][counter[state]] = vector;
+            samples_mix[state][counter[state]] = &(obs->mix[i]);
+            counter[state]++;            
+        }
+    } 
+    
+    /* clear counters */
+    memset( counter, 0, total*sizeof(int) );
+    
+    /* do the actual clustering using the K Means algorithm */
+    for (i = 0; i < total; i++)
+    {
+        if ( first_state[i].num_mix == 1)
+        {   
+            for (k = 0; k < num_samples[i]; k++)
+            {  
+                /* all vectors belong to one mixture */
+                a_class[i][k] = 0;
+            }
+        }      
+        else if( num_samples[i] )
+        {
+            /* clusterize vectors  */
+            cvKMeans( first_state[i].num_mix, samples[i], num_samples[i], 
+                      obs_info_array[0]->obs_size, criteria, a_class[i] );
+        } 
+    }
+    
+    /* for every vector number of mixture is assigned */
+    for( i = 0; i < total; i++ )
+    {
+        for (j = 0; j < num_samples[i]; j++)
+        {
+            samples_mix[i][j][0] = a_class[i][j];
+        }
+    }
+    
+    for (i = 0; i < total; i++)
+    {
+        cvFree( &(a_class[i]) );
+        cvFree( &(samples[i]) );
+        cvFree( &(samples_mix[i]) );
+    }
+
+    cvFree( &a_class );
+    cvFree( &samples );
+    cvFree( &samples_mix );
+    cvFree( &counter );
+    cvFree( &num_samples );  
+    
+    return CV_NO_ERR;
+}
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: ComputeUniModeGauss
+//    Purpose: The function computes the Gaussian pdf for a sample vector 
+//    Context:
+//    Parameters:  obsVeq - pointer to the sample vector
+//                 mu - pointer to the mean vector of the Gaussian pdf
+//                 var - pointer to the variance vector of the Gaussian pdf
+//                 VecSize - the size of sample vector
+//                 
+//    Returns: the pdf of the sample vector given the specified Gaussian 
+//
+//    Notes: 
+//F*/
+/*static float icvComputeUniModeGauss(CvVect32f vect, CvVect32f mu, 
+                              CvVect32f inv_var, float log_var_val, int vect_size)           
+{
+    int n; 
+    double tmp;
+    double prob;
+
+    prob = -log_var_val;
+
+    for (n = 0; n < vect_size; n++)
+    {
+        tmp = (vect[n] - mu[n]) * inv_var[n];
+        prob = prob - tmp * tmp;
+   }
+   //prob *= 0.5f;
+  
+   return (float)prob;
+}*/                        
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: ComputeGaussMixture
+//    Purpose: The function computes the mixture Gaussian pdf of a sample vector. 
+//    Context:
+//    Parameters:  obsVeq - pointer to the sample vector
+//                 mu  - two-dimensional pointer to the mean vector of the Gaussian pdf;
+//                       the first dimension is indexed over the number of mixtures and 
+//                       the second dimension is indexed along the size of the mean vector
+//                 var - two-dimensional pointer to the variance vector of the Gaussian pdf;
+//                       the first dimension is indexed over the number of mixtures and 
+//                       the second dimension is indexed along the size of the variance vector
+//                 VecSize - the size of sample vector
+//                 weight - pointer to the wights of the Gaussian mixture
+//                 NumMix - the number of Gaussian mixtures
+//                 
+//    Returns: the pdf of the sample vector given the specified Gaussian mixture.  
+//
+//    Notes: 
+//F*/
+/* Calculate probability of observation at state in logarithmic scale*/
+/*static float
+icvComputeGaussMixture( CvVect32f vect, float* mu, 
+                        float* inv_var, float* log_var_val, 
+                        int vect_size, float* weight, int num_mix )
+{       
+    double prob, l_prob;
+    
+    prob = 0.0f; 
+
+    if (num_mix == 1)
+    {
+        return icvComputeUniModeGauss( vect, mu, inv_var, log_var_val[0], vect_size);    
+    }
+    else
+    {
+        int m;
+        for (m = 0; m < num_mix; m++)
+        {
+            if ( weight[m] > 0.0)
+            { 
+                l_prob = icvComputeUniModeGauss(vect, mu + m*vect_size, 
+                                                        inv_var + m * vect_size,
+                                                        log_var_val[m], 
+                                                        vect_size); 
+
+                prob = prob + weight[m]*exp((double)l_prob);
+            }
+        } 
+        prob = log(prob);    
+    }                        
+    return (float)prob;   
+}*/                            
+
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: EstimateObsProb
+//    Purpose: The function computes the probability of every observation in every state 
+//    Context:
+//    Parameters:  obs_info - observations
+//                 hmm      - hmm
+//    Returns: error status  
+//
+//    Notes: 
+//F*/
+static CvStatus CV_STDCALL icvEstimateObsProb( CvImgObsInfo* obs_info, CvEHMM* hmm )
+{
+    int i, j;
+    int total_states = 0;
+
+    /* check if matrix exist and check current size
+       if not sufficient - realloc */
+    int status = 0; /* 1 - not allocated, 2 - allocated but small size, 
+                       3 - size is enough, but distribution is bad, 0 - all ok */
+
+    for( j = 0; j < hmm->num_states; j++ )
+    {
+       total_states += hmm->u.ehmm[j].num_states;
+    }
+
+    if ( hmm->obsProb == NULL ) 
+    {
+        /* allocare memory */
+        int need_size = ( obs_info->obs_x * obs_info->obs_y * total_states * sizeof(float) +
+                          obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f) );
+
+        int* buffer = (int*)cvAlloc( need_size + 3 * sizeof(int) );
+        buffer[0] = need_size;
+        buffer[1] = obs_info->obs_y;
+        buffer[2] = obs_info->obs_x;
+        hmm->obsProb = (float**) (buffer + 3);
+        status = 3;
+        
+    }
+    else
+    {   
+        /* check current size */
+        int* total= (int*)(((int*)(hmm->obsProb)) - 3);
+        int need_size = ( obs_info->obs_x * obs_info->obs_y * total_states * sizeof(float) +
+                          obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f/*(float*)*/ ) );
+
+        assert( sizeof(float*) == sizeof(int) );
+
+        if ( need_size > (*total) ) 
+        {
+            int* buffer = ((int*)(hmm->obsProb)) - 3;
+            cvFree( &buffer);
+            buffer = (int*)cvAlloc( need_size + 3 * sizeof(int));
+            buffer[0] = need_size;
+            buffer[1] = obs_info->obs_y;
+            buffer[2] = obs_info->obs_x;
+
+            hmm->obsProb = (float**)(buffer + 3);
+            
+            status = 3;
+        }          
+    }
+    if (!status)
+    {
+        int* obsx = ((int*)(hmm->obsProb)) - 1;
+        int* obsy = ((int*)(hmm->obsProb)) - 2;
+                
+        assert( (*obsx > 0) && (*obsy > 0) );
+
+        /* is good distribution? */
+        if ( (obs_info->obs_x > (*obsx) ) || (obs_info->obs_y > (*obsy) ) ) 
+            status = 3;        
+    }
+    
+    /* if bad status - do reallocation actions */
+    assert( (status == 0) || (status == 3) );
+
+    if ( status )
+    {
+        float** tmp = hmm->obsProb;
+        float*  tmpf;
+
+        /* distribute pointers of ehmm->obsProb */
+        for( i = 0; i < hmm->num_states; i++ )
+        {
+            hmm->u.ehmm[i].obsProb = tmp; 
+            tmp += obs_info->obs_y;
+        }
+
+        tmpf = (float*)tmp;
+
+        /* distribute pointers of ehmm->obsProb[j] */
+        for( i = 0; i < hmm->num_states; i++ )
+        {
+            CvEHMM* ehmm = &( hmm->u.ehmm[i] );
+            
+            for( j = 0; j < obs_info->obs_y; j++ )
+            {
+                ehmm->obsProb[j] = tmpf;
+                tmpf += ehmm->num_states * obs_info->obs_x;
+            }           
+        }
+    }/* end of pointer distribution */ 
+
+#if 1    
+    {
+#define MAX_BUF_SIZE  1200
+        float  local_log_mix_prob[MAX_BUF_SIZE];
+        double local_mix_prob[MAX_BUF_SIZE];
+        int    vect_size = obs_info->obs_size;
+        CvStatus res = CV_NO_ERR;
+
+        float*  log_mix_prob = local_log_mix_prob;
+        double* mix_prob = local_mix_prob;
+        
+        int  max_size = 0;
+        int  obs_x = obs_info->obs_x;
+
+        /* calculate temporary buffer size */
+        for( i = 0; i < hmm->num_states; i++ )
+        {
+            CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+            CvEHMMState* state = ehmm->u.state;
+
+            int max_mix = 0;
+            for( j = 0; j < ehmm->num_states; j++ )
+            {
+                int t = state[j].num_mix;
+                if( max_mix < t ) max_mix = t;
+            }
+            max_mix *= ehmm->num_states;
+            if( max_size < max_mix ) max_size = max_mix;
+        }
+
+        max_size *= obs_x * vect_size;
+        
+        /* allocate buffer */
+        if( max_size > MAX_BUF_SIZE )
+        {
+            log_mix_prob = (float*)cvAlloc( max_size*(sizeof(float) + sizeof(double)));
+            if( !log_mix_prob ) return CV_OUTOFMEM_ERR;
+            mix_prob = (double*)(log_mix_prob + max_size);
+        }
+
+        memset( log_mix_prob, 0, max_size*sizeof(float));
+
+        /*****************computing probabilities***********************/
+        
+        /* loop through external states */
+        for( i = 0; i < hmm->num_states; i++ )
+        {
+            CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+            CvEHMMState* state = ehmm->u.state;
+            
+            int max_mix = 0;
+            int n_states = ehmm->num_states;
+
+            /* determine maximal number of mixtures (again) */
+            for( j = 0; j < ehmm->num_states; j++ )
+            {
+                int t = state[j].num_mix;
+                if( max_mix < t ) max_mix = t;
+            }
+
+            /* loop through rows of the observation matrix */
+            for( j = 0; j < obs_info->obs_y; j++ )
+            {
+                int  m, n;
+                       
+                float* obs = obs_info->obs + j * obs_x * vect_size;
+                float* log_mp = max_mix > 1 ? log_mix_prob : ehmm->obsProb[j];
+                double* mp = mix_prob;
+            
+                /* several passes are done below */
+                
+                /* 1. calculate logarithms of probabilities for each mixture */
+
+                /* loop through mixtures */
+                for( m = 0; m < max_mix; m++ )
+                {
+                    /* set pointer to first observation in the line */
+                    float* vect = obs;
+
+                    /* cycles through obseravtions in the line */
+                    for( n = 0; n < obs_x; n++, vect += vect_size, log_mp += n_states )
+                    {
+                        int k, l;
+                        for( l = 0; l < n_states; l++ )
+                        {
+                            if( state[l].num_mix > m )
+                            {
+                                float* mu = state[l].mu + m*vect_size;
+                                float* inv_var = state[l].inv_var + m*vect_size;
+                                double prob = -state[l].log_var_val[m];
+                                for( k = 0; k < vect_size; k++ )
+                                {
+                                    double t = (vect[k] - mu[k])*inv_var[k];
+                                    prob -= t*t;
+                                }
+                                log_mp[l] = MAX( (float)prob, -500 );
+                            }
+                        }
+                    }
+                }
+
+                /* skip the rest if there is a single mixture */
+                if( max_mix == 1 ) continue;
+
+                /* 2. calculate exponent of log_mix_prob
+                      (i.e. probability for each mixture) */
+                cvbFastExp( log_mix_prob, mix_prob, max_mix * obs_x * n_states );
+
+                /* 3. sum all mixtures with weights */
+                /* 3a. first mixture - simply scale by weight */
+                for( n = 0; n < obs_x; n++, mp += n_states )
+                {
+                    int l;
+                    for( l = 0; l < n_states; l++ )
+                    {
+                        mp[l] *= state[l].weight[0];
+                    }
+                }
+
+                /* 3b. add other mixtures */
+                for( m = 1; m < max_mix; m++ )
+                {
+                    int ofs = -m*obs_x*n_states;
+                    for( n = 0; n < obs_x; n++, mp += n_states )
+                    {
+                        int l;
+                        for( l = 0; l < n_states; l++ )
+                        {
+                            if( m < state[l].num_mix )
+                            {
+                                mp[l + ofs] += mp[l] * state[l].weight[m];
+                            }
+                        }
+                    }
+                }
+
+                /* 4. Put logarithms of summary probabilities to the destination matrix */
+                cvbFastLog( mix_prob, ehmm->obsProb[j], obs_x * n_states );
+            }
+        }
+
+        if( log_mix_prob != local_log_mix_prob ) cvFree( &log_mix_prob );
+        return res;
+#undef MAX_BUF_SIZE
+    }
+#else
+    for( i = 0; i < hmm->num_states; i++ )
+    {
+        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+        CvEHMMState* state = ehmm->u.state;
+
+        for( j = 0; j < obs_info->obs_y; j++ )
+        {
+            int k,m;
+                       
+            int obs_index = j * obs_info->obs_x;
+
+            float* B = ehmm->obsProb[j];
+            
+            /* cycles through obs and states */
+            for( k = 0; k < obs_info->obs_x; k++ )
+            {
+                CvVect32f vect = (obs_info->obs) + (obs_index + k) * vect_size;
+                
+                float* matr_line = B + k * ehmm->num_states;
+
+                for( m = 0; m < ehmm->num_states; m++ )
+                {
+                    matr_line[m] = icvComputeGaussMixture( vect, state[m].mu, state[m].inv_var, 
+                                                             state[m].log_var_val, vect_size, state[m].weight,
+                                                             state[m].num_mix );
+                }
+            }
+        }
+    }
+#endif
+}
+
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: EstimateTransProb
+//    Purpose: The function calculates the state and super state transition probabilities 
+//             of the model given the images, 
+//             the state segmentation and the input parameters
+//    Context:
+//    Parameters: obs_info_array - array of pointers to image observations 
+//                num_img - length of above array
+//                hmm - pointer to HMM structure                 
+//    Returns: void
+//
+//    Notes:   
+//F*/
+static CvStatus CV_STDCALL
+icvEstimateTransProb( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
+{
+    int  i, j, k;
+
+    CvEHMMState* first_state = hmm->u.ehmm->u.state;
+    /* as a counter we will use transP matrix */
+    
+    /* initialization */
+    
+    /* clear transP */
+    icvSetZero_32f( hmm->transP, hmm->num_states, hmm->num_states );
+    for (i = 0; i < hmm->num_states; i++ )
+    {
+        icvSetZero_32f( hmm->u.ehmm[i].transP , hmm->u.ehmm[i].num_states, hmm->u.ehmm[i].num_states );
+    }
+        
+    /* compute the counters */
+    for (i = 0; i < num_img; i++)
+    {
+        int counter = 0;
+        CvImgObsInfo* info = obs_info_array[i];
+        
+        for (j = 0; j < info->obs_y; j++)
+        {
+            for (k = 0; k < info->obs_x; k++, counter++)
+            {
+                /* compute how many transitions from state to state
+                   occured both in horizontal and vertical direction */ 
+                int superstate, state;
+                int nextsuperstate, nextstate;
+                int begin_ind;
+
+                superstate = info->state[2 * counter];
+                begin_ind = (int)(hmm->u.ehmm[superstate].u.state - first_state);
+                state = info->state[ 2 * counter + 1] - begin_ind; 
+                
+                if (j < info->obs_y - 1)
+                {
+                    int transP_size = hmm->num_states;
+                    
+                    nextsuperstate = info->state[ 2*(counter + info->obs_x) ];
+
+                    hmm->transP[superstate * transP_size + nextsuperstate] += 1;
+                }
+                
+                if (k < info->obs_x - 1)
+                {   
+                    int transP_size = hmm->u.ehmm[superstate].num_states;
+
+                    nextstate = info->state[2*(counter+1) + 1] - begin_ind;
+                    hmm->u.ehmm[superstate].transP[ state * transP_size + nextstate] += 1;
+                }
+            }
+        }
+    }
+    /* estimate superstate matrix */
+    for( i = 0; i < hmm->num_states; i++)
+    {
+        float total = 0;
+        float inv_total;
+        for( j = 0; j < hmm->num_states; j++)
+        {
+            total += hmm->transP[i * hmm->num_states + j];
+        }
+        //assert( total );
+
+        inv_total = total ? 1.f/total : 0;
+        
+        for( j = 0; j < hmm->num_states; j++)
+        {                   
+            hmm->transP[i * hmm->num_states + j] = 
+                hmm->transP[i * hmm->num_states + j] ? 
+                (float)log( hmm->transP[i * hmm->num_states + j] * inv_total ) : -BIG_FLT;
+        }
+    }
+    
+    /* estimate other matrices */
+    for( k = 0; k < hmm->num_states; k++ )
+    {
+        CvEHMM* ehmm = &(hmm->u.ehmm[k]);
+
+        for( i = 0; i < ehmm->num_states; i++)
+        {
+            float total = 0;
+            float inv_total;
+            for( j = 0; j < ehmm->num_states; j++)
+            {
+                total += ehmm->transP[i*ehmm->num_states + j];
+            }
+            //assert( total );
+            inv_total = total ? 1.f/total :  0;
+            
+            for( j = 0; j < ehmm->num_states; j++)
+            {                   
+                ehmm->transP[i * ehmm->num_states + j] = 
+                    (ehmm->transP[i * ehmm->num_states + j]) ?
+                    (float)log( ehmm->transP[i * ehmm->num_states + j] * inv_total) : -BIG_FLT ;
+            }
+        }
+    }
+    return CV_NO_ERR;
+} 
+                      
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: MixSegmL2
+//    Purpose: The function implements the mixture segmentation of the states of the
+//             embedded HMM
+//    Context: used with the Viterbi training of the embedded HMM
+//
+//    Parameters:  
+//             obs_info_array
+//             num_img
+//             hmm
+//    Returns: void
+//
+//    Notes: 
+//F*/
+static CvStatus CV_STDCALL
+icvMixSegmL2( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
+{
+    int     k, i, j, m;
+       
+    CvEHMMState* state = hmm->u.ehmm[0].u.state;
+    
+    
+    for (k = 0; k < num_img; k++)
+    {   
+        int counter = 0;
+        CvImgObsInfo* info = obs_info_array[k];
+
+        for (i = 0; i < info->obs_y; i++)
+        {
+            for (j = 0; j < info->obs_x; j++, counter++)
+            {
+                int e_state = info->state[2 * counter + 1];
+                float min_dist;
+                                                
+                min_dist = icvSquareDistance((info->obs) + (counter * info->obs_size), 
+                                               state[e_state].mu, info->obs_size);
+                info->mix[counter] = 0;  
+                
+                for (m = 1; m < state[e_state].num_mix; m++)
+                {
+                    float dist=icvSquareDistance( (info->obs) + (counter * info->obs_size),
+                                                    state[e_state].mu + m * info->obs_size,
+                                                    info->obs_size);
+                    if (dist < min_dist)
+                    {
+                        min_dist = dist;
+                        /* assign mixture with smallest distance */ 
+                        info->mix[counter] = m;
+                    }
+                }
+            }
+        }
+    }
+    return CV_NO_ERR;
+} 
+
+/*
+CvStatus icvMixSegmProb(CvImgObsInfo* obs_info, int num_img, CvEHMM* hmm )
+{
+    int     k, i, j, m;
+       
+    CvEHMMState* state = hmm->ehmm[0].state_info;
+    
+    
+    for (k = 0; k < num_img; k++)
+    {   
+        int counter = 0;
+        CvImgObsInfo* info = obs_info + k;
+
+        for (i = 0; i < info->obs_y; i++)
+        {
+            for (j = 0; j < info->obs_x; j++, counter++)
+            {
+                int e_state = info->in_state[counter];
+                float max_prob;
+                                                
+                max_prob = icvComputeUniModeGauss( info->obs[counter], state[e_state].mu[0], 
+                                                    state[e_state].inv_var[0], 
+                                                    state[e_state].log_var[0],
+                                                    info->obs_size );
+                info->mix[counter] = 0;  
+                
+                for (m = 1; m < state[e_state].num_mix; m++)
+                {
+                    float prob=icvComputeUniModeGauss(info->obs[counter], state[e_state].mu[m],
+                                                       state[e_state].inv_var[m], 
+                                                       state[e_state].log_var[m],
+                                                       info->obs_size);
+                    if (prob > max_prob)
+                    {
+                        max_prob = prob;
+                        // assign mixture with greatest probability. 
+                        info->mix[counter] = m;
+                    }
+                }
+            }
+        }
+    } 
+
+    return CV_NO_ERR;
+} 
+*/
+static CvStatus CV_STDCALL
+icvViterbiSegmentation( int num_states, int /*num_obs*/, CvMatr32f transP,
+                        CvMatr32f B, int start_obs, int prob_type,
+                        int** q, int min_num_obs, int max_num_obs,
+                        float* prob )
+{
+    // memory allocation 
+    int i, j, last_obs;
+    int m_HMMType = _CV_ERGODIC; /* _CV_CAUSAL or _CV_ERGODIC */
+    
+    int m_ProbType   = prob_type; /* _CV_LAST_STATE or _CV_BEST_STATE */
+    
+    int m_minNumObs  = min_num_obs; /*??*/
+    int m_maxNumObs  = max_num_obs; /*??*/
+    
+    int m_numStates  = num_states;
+    
+    float* m_pi = (float*)cvAlloc( num_states* sizeof(float) );
+    CvMatr32f m_a = transP;
+
+    // offset brobability matrix to starting observation 
+    CvMatr32f m_b = B + start_obs * num_states;
+    //so m_xl will not be used more
+
+    //m_xl = start_obs; 
+
+    /*     if (muDur != NULL){ 
+    m_d = new int[m_numStates];
+    m_l = new double[m_numStates];
+    for (i = 0; i < m_numStates; i++){
+    m_l[i] = muDur[i]; 
+    }
+    } 
+    else{
+    m_d = NULL;
+    m_l = NULL;
+    }
+    */
+    
+    CvMatr32f m_Gamma = icvCreateMatrix_32f( num_states, m_maxNumObs );
+    int* m_csi = (int*)cvAlloc( num_states * m_maxNumObs * sizeof(int) );
+    
+    //stores maximal result for every ending observation */
+    CvVect32f   m_MaxGamma = prob;
+    
+
+//    assert( m_xl + max_num_obs <= num_obs );
+
+    /*??m_q          = new int*[m_maxNumObs - m_minNumObs];
+      ??for (i = 0; i < m_maxNumObs - m_minNumObs; i++)
+      ??     m_q[i] = new int[m_minNumObs + i + 1];
+    */
+
+    /******************************************************************/
+    /*    Viterbi initialization                                      */
+    /* set initial state probabilities, in logarithmic scale */
+    for (i = 0; i < m_numStates; i++)
+    {
+        m_pi[i] = -BIG_FLT;
+    }
+    m_pi[0] = 0.0f;
+    
+    for  (i = 0; i < num_states; i++)
+    {
+        m_Gamma[0 * num_states + i] = m_pi[i] + m_b[0 * num_states + i];
+        m_csi[0 * num_states + i] = 0;   
+    }
+    
+    /******************************************************************/
+    /*    Viterbi recursion                                           */
+    
+    if ( m_HMMType == _CV_CAUSAL ) //causal model
+    {
+        int t,j;
+        
+        for (t = 1 ; t < m_maxNumObs; t++)
+        {
+            // evaluate self-to-self transition for state 0
+            m_Gamma[t * num_states + 0] = m_Gamma[(t-1) * num_states + 0] + m_a[0];
+            m_csi[t * num_states + 0] = 0;
+            
+            for (j = 1; j < num_states; j++)
+            {  
+                float self = m_Gamma[ (t-1) * num_states + j] + m_a[ j * num_states + j];
+                float prev = m_Gamma[ (t-1) * num_states +(j-1)] + m_a[ (j-1) * num_states + j];
+                
+                if ( prev > self )
+                {
+                    m_csi[t * num_states + j] = j-1;
+                    m_Gamma[t * num_states + j] = prev;
+                }
+                else
+                {
+                    m_csi[t * num_states + j] = j;
+                    m_Gamma[t * num_states + j] = self;
+                }
+                
+                m_Gamma[t * num_states + j] = m_Gamma[t * num_states + j] + m_b[t * num_states + j];   
+            }                                                                    
+        }
+    }
+    else if ( m_HMMType == _CV_ERGODIC ) //ergodic model 
+    { 
+        int t;
+        for (t = 1 ; t < m_maxNumObs; t++)
+        {     
+            for (j = 0; j < num_states; j++)
+            {   
+                int i;
+                m_Gamma[ t*num_states + j] = m_Gamma[(t-1) * num_states + 0] + m_a[0*num_states+j];
+                m_csi[t *num_states + j] = 0;
+                
+                for (i = 1; i < num_states; i++)
+                {
+                    float currGamma = m_Gamma[(t-1) *num_states + i] + m_a[i *num_states + j];       
+                    if (currGamma > m_Gamma[t *num_states + j])
+                    { 
+                        m_Gamma[t * num_states + j] = currGamma;
+                        m_csi[t * num_states + j] = i;
+                    }
+                } 
+                m_Gamma[t *num_states + j] = m_Gamma[t *num_states + j] + m_b[t * num_states + j];
+            }             
+        }                  
+    }
+
+    for( last_obs = m_minNumObs-1, i = 0; last_obs < m_maxNumObs; last_obs++, i++ )
+    {
+        int t;
+
+        /******************************************************************/
+        /*    Viterbi termination                                         */
+    
+        if ( m_ProbType == _CV_LAST_STATE )
+        {
+            m_MaxGamma[i] = m_Gamma[last_obs * num_states + num_states - 1];
+            q[i][last_obs] = num_states - 1;
+        }
+        else if( m_ProbType == _CV_BEST_STATE )
+        {
+            int k;
+            q[i][last_obs] = 0;  
+            m_MaxGamma[i] = m_Gamma[last_obs * num_states + 0]; 
+        
+            for(k = 1; k < num_states; k++)
+            { 
+                if ( m_Gamma[last_obs * num_states + k] > m_MaxGamma[i] )
+                {
+                    m_MaxGamma[i] = m_Gamma[last_obs * num_states + k];
+                    q[i][last_obs] = k;
+                }    
+            }
+        } 
+    
+        /******************************************************************/
+        /*    Viterbi backtracking                                        */
+        for  (t = last_obs-1; t >= 0; t--)
+        {
+            q[i][t] = m_csi[(t+1) * num_states + q[i][t+1] ];   
+        } 
+    }            
+    
+    /* memory free */
+    cvFree( &m_pi );
+    cvFree( &m_csi );
+    icvDeleteMatrix( m_Gamma );   
+       
+    return CV_NO_ERR;
+} 
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: icvEViterbi
+//    Purpose: The function calculates the embedded Viterbi algorithm
+//             for 1 image 
+//    Context:
+//    Parameters:  
+//             obs_info - observations
+//             hmm      - HMM
+//                
+//    Returns: the Embedded Viterbi probability (float) 
+//             and do state segmentation of observations
+//
+//    Notes: 
+//F*/
+static float CV_STDCALL icvEViterbi( CvImgObsInfo* obs_info, CvEHMM* hmm )
+{
+    int    i, j, counter;
+    float  log_likelihood;
+
+    float inv_obs_x = 1.f / obs_info->obs_x;
+
+    CvEHMMState* first_state = hmm->u.ehmm->u.state;
+    
+    /* memory allocation for superB */
+    CvMatr32f superB = icvCreateMatrix_32f(hmm->num_states, obs_info->obs_y );
+    
+    /* memory allocation for q */
+    int*** q = (int***)cvAlloc( hmm->num_states * sizeof(int**) );
+    int* super_q = (int*)cvAlloc( obs_info->obs_y * sizeof(int) );
+    
+    for (i = 0; i < hmm->num_states; i++)
+    {
+        q[i] = (int**)cvAlloc( obs_info->obs_y * sizeof(int*) );
+        
+        for (j = 0; j < obs_info->obs_y ; j++)
+        {
+            q[i][j] = (int*)cvAlloc( obs_info->obs_x * sizeof(int) );
+        }
+    }             
+    
+    /* start Viterbi segmentation */
+    for (i = 0; i < hmm->num_states; i++)
+    {
+        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
+        
+        for (j = 0; j < obs_info->obs_y; j++)
+        {
+            float max_gamma;
+            
+            /* 1D HMM Viterbi segmentation */
+            icvViterbiSegmentation( ehmm->num_states, obs_info->obs_x, 
+                ehmm->transP, ehmm->obsProb[j], 0, 
+                _CV_LAST_STATE, &q[i][j], obs_info->obs_x,
+                obs_info->obs_x, &max_gamma);
+            
+            superB[j * hmm->num_states + i] = max_gamma * inv_obs_x;
+        }
+    }
+    
+    /* perform global Viterbi segmentation (i.e. process higher-level HMM) */
+    
+    icvViterbiSegmentation( hmm->num_states, obs_info->obs_y, 
+                             hmm->transP, superB, 0, 
+                             _CV_LAST_STATE, &super_q, obs_info->obs_y,
+                             obs_info->obs_y, &log_likelihood );
+    
+    log_likelihood /= obs_info->obs_y ;   
+    
+    
+    counter = 0;
+    /* assign new state to observation vectors */
+    for (i = 0; i < obs_info->obs_y; i++)
+    {   
+        for (j = 0; j < obs_info->obs_x; j++, counter++)
+        {
+            int superstate = super_q[i];
+            int state = (int)(hmm->u.ehmm[superstate].u.state - first_state);
+            
+            obs_info->state[2 * counter] = superstate;
+            obs_info->state[2 * counter + 1] = state + q[superstate][i][j];
+        }
+    }
+    
+    /* memory deallocation for superB */
+    icvDeleteMatrix( superB );
+    
+    /*memory deallocation for q */
+    for (i = 0; i < hmm->num_states; i++)
+    {
+        for (j = 0; j < obs_info->obs_y ; j++)
+        {
+            cvFree( &q[i][j] );
+        }
+        cvFree( &q[i] );
+    }
+    
+    cvFree( &q );
+    cvFree( &super_q );
+    
+    return log_likelihood;
+}  
+
+static CvStatus CV_STDCALL
+icvEstimateHMMStateParams( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
+{
+    /* compute gamma, weights, means, vars */
+    int k, i, j, m;
+    int total = 0;
+    int vect_len = obs_info_array[0]->obs_size;
+
+    float start_log_var_val = LN2PI * vect_len;
+
+    CvVect32f tmp_vect = icvCreateVector_32f( vect_len );
+    
+    CvEHMMState* first_state = hmm->u.ehmm[0].u.state;
+
+    assert( sizeof(float) == sizeof(int) );
+
+    for(i = 0; i < hmm->num_states; i++ )
+    {
+        total+= hmm->u.ehmm[i].num_states;
+    }
+
+    /***************Gamma***********************/
+    /* initialize gamma */
+    for( i = 0; i < total; i++ )
+    {
+        for (m = 0; m < first_state[i].num_mix; m++)
+        {
+            ((int*)(first_state[i].weight))[m] = 0;
+        }     
+    }
+    
+    /* maybe gamma must be computed in mixsegm process ?? */
+
+    /* compute gamma */
+    for (k = 0; k < num_img; k++)
+    {
+        CvImgObsInfo* info = obs_info_array[k];
+        int num_obs = info->obs_y * info->obs_x;
+
+        for (i = 0; i < num_obs; i++)
+        {
+            int state, mixture;
+            state = info->state[2*i + 1];
+            mixture = info->mix[i];
+            /* computes gamma - number of observations corresponding 
+               to every mixture of every state */ 
+            ((int*)(first_state[state].weight))[mixture] += 1;              
+        }
+    }     
+    /***************Mean and Var***********************/
+    /* compute means and variances of every item */
+    /* initially variance placed to inv_var */
+    /* zero mean and variance */
+    for (i = 0; i < total; i++)
+    {
+        memset( (void*)first_state[i].mu, 0, first_state[i].num_mix * vect_len * 
+                                                                         sizeof(float) );
+        memset( (void*)first_state[i].inv_var, 0, first_state[i].num_mix * vect_len * 
+                                                                         sizeof(float) );
+    }
+    
+    /* compute sums */
+    for (i = 0; i < num_img; i++)
+    {
+        CvImgObsInfo* info = obs_info_array[i];
+        int total_obs = info->obs_x * info->obs_y;
+
+        float* vector = info->obs;
+
+        for (j = 0; j < total_obs; j++, vector+=vect_len )
+        {   
+            int state = info->state[2 * j + 1];
+            int mixture = info->mix[j]; 
+            
+            CvVect32f mean  = first_state[state].mu + mixture * vect_len;
+            CvVect32f mean2 = first_state[state].inv_var + mixture * vect_len;
+            
+            icvAddVector_32f( mean, vector, mean, vect_len );
+            for( k = 0; k < vect_len; k++ )
+                mean2[k] += vector[k]*vector[k];
+        }   
+    }
+    
+    /*compute the means and variances */
+    /* assume gamma already computed */
+    for (i = 0; i < total; i++)
+    {           
+        CvEHMMState* state = &(first_state[i]);
+
+        for (m = 0; m < state->num_mix; m++)
+        {
+            int k;
+            CvVect32f mu  = state->mu + m * vect_len;
+            CvVect32f invar = state->inv_var + m * vect_len;             
+            
+            if ( ((int*)state->weight)[m] > 1)
+            {
+                float inv_gamma = 1.f/((int*)(state->weight))[m];
+            
+                icvScaleVector_32f( mu, mu, vect_len, inv_gamma);
+                icvScaleVector_32f( invar, invar, vect_len, inv_gamma);
+            }
+
+            icvMulVectors_32f(mu, mu, tmp_vect, vect_len);
+            icvSubVector_32f( invar, tmp_vect, invar, vect_len);     
+            
+            /* low bound of variance - 100 (Ara's experimental result) */
+            for( k = 0; k < vect_len; k++ )
+            {
+                invar[k] = (invar[k] > 100.f) ? invar[k] : 100.f;
+            }
+
+            /* compute log_var */
+            state->log_var_val[m] = start_log_var_val;
+            for( k = 0; k < vect_len; k++ )
+            {
+                state->log_var_val[m] += (float)log( invar[k] );
+            }           
+
+            /* SMOLI 27.10.2000 */
+            state->log_var_val[m] *= 0.5;
+
+
+            /* compute inv_var = 1/sqrt(2*variance) */
+            icvScaleVector_32f(invar, invar, vect_len, 2.f );
+            cvbInvSqrt( invar, invar, vect_len );
+        }
+    }
+  
+    /***************Weights***********************/
+    /* normilize gammas - i.e. compute mixture weights */
+    
+    //compute weights
+    for (i = 0; i < total; i++)
+    {           
+        int gamma_total = 0;
+        float norm;
+
+        for (m = 0; m < first_state[i].num_mix; m++)
+        {
+            gamma_total += ((int*)(first_state[i].weight))[m];  
+        }
+
+        norm = gamma_total ? (1.f/(float)gamma_total) : 0.f;
+            
+        for (m = 0; m < first_state[i].num_mix; m++)
+        {
+            first_state[i].weight[m] = ((int*)(first_state[i].weight))[m] * norm;
+        } 
+    }                                               
+
+    icvDeleteVector( tmp_vect);
+    return CV_NO_ERR; 
+}   
+
+/*
+CvStatus icvLightingCorrection8uC1R( uchar* img, CvSize roi, int src_step )
+{
+    int i, j;
+    int width = roi.width;
+    int height = roi.height;
+    
+    float x1, x2, y1, y2;
+    int f[3] = {0, 0, 0};
+    float a[3] = {0, 0, 0};
+    
+    float h1;
+    float h2;
+    
+    float c1,c2;
+    
+    float min = FLT_MAX;
+    float max = -FLT_MAX;
+    float correction;
+    
+    float* float_img = icvAlloc( width * height * sizeof(float) );
+    
+    x1 = width * (width + 1) / 2.0f; // Sum (1, ... , width)
+    x2 = width * (width + 1 ) * (2 * width + 1) / 6.0f; // Sum (1^2, ... , width^2)
+    y1 = height * (height + 1)/2.0f; // Sum (1, ... , width)
+    y2 = height * (height + 1 ) * (2 * height + 1) / 6.0f; // Sum (1^2, ... , width^2)
+    
+    
+    // extract grayvalues
+    for (i = 0; i < height; i++)
+    {
+        for (j = 0; j < width; j++)
+        {
+            f[2] = f[2] + j * img[i*src_step + j];
+            f[1] = f[1] + i * img[i*src_step + j];
+            f[0] = f[0] +     img[i*src_step + j];
+        }
+    }
+    
+    h1 = (float)f[0] * (float)x1 / (float)width;
+    h2 = (float)f[0] * (float)y1 / (float)height;
+    
+    a[2] = ((float)f[2] - h1) / (float)(x2*height - x1*x1*height/(float)width);
+    a[1] = ((float)f[1] - h2) / (float)(y2*width - y1*y1*width/(float)height);
+    a[0] = (float)f[0]/(float)(width*height) - (float)y1*a[1]/(float)height - 
+        (float)x1*a[2]/(float)width;
+    
+    for (i = 0; i < height; i++) 
+    {    
+        for (j = 0; j < width; j++)
+        {
+            
+            correction = a[0] + a[1]*(float)i + a[2]*(float)j;
+            
+            float_img[i*width + j] = img[i*src_step + j] - correction;
+            
+            if (float_img[i*width + j] < min) min = float_img[i*width+j];
+            if (float_img[i*width + j] > max) max = float_img[i*width+j];
+        }
+    }
+    
+    //rescaling to the range 0:255
+    c2 = 0;
+    if (max == min)
+        c2 = 255.0f;
+    else
+        c2 = 255.0f/(float)(max - min);
+    
+    c1 = (-(float)min)*c2;
+    
+    for (i = 0; i < height; i++)
+    {
+        for (j = 0; j < width; j++)
+        {
+            int value = (int)floor(c2*float_img[i*width + j] + c1);
+            if (value < 0) value = 0;
+            if (value > 255) value = 255;
+            img[i*src_step + j] = (uchar)value;
+        }
+    }
+
+    cvFree( &float_img );
+    return CV_NO_ERR;
+}
+                              
+
+CvStatus icvLightingCorrection( icvImage* img ) 
+{
+    CvSize roi;
+    if ( img->type != IPL_DEPTH_8U || img->channels != 1 )
+    return CV_BADFACTOR_ERR;
+
+    roi = _cvSize( img->roi.width, img->roi.height );
+    
+    return _cvLightingCorrection8uC1R( img->data + img->roi.y * img->step + img->roi.x, 
+                                        roi, img->step );
+
+}
+
+*/
+
+CV_IMPL CvEHMM*
+cvCreate2DHMM( int *state_number, int *num_mix, int obs_size )
+{
+    CvEHMM* hmm = 0;
+
+    IPPI_CALL( icvCreate2DHMM( &hmm, state_number, num_mix, obs_size ));
+
+    return hmm;
+}
+
+CV_IMPL void
+cvRelease2DHMM( CvEHMM ** hmm )
+{
+    IPPI_CALL( icvRelease2DHMM( hmm ));
+}
+
+CV_IMPL CvImgObsInfo*
+cvCreateObsInfo( CvSize num_obs, int obs_size )
+{
+    CvImgObsInfo *obs_info = 0;
+
+    IPPI_CALL( icvCreateObsInfo( &obs_info, num_obs, obs_size ));
+
+    return obs_info;
+}
+
+CV_IMPL void
+cvReleaseObsInfo( CvImgObsInfo ** obs_info )
+{
+    IPPI_CALL( icvReleaseObsInfo( obs_info ));
+}
+
+
+CV_IMPL void
+cvUniformImgSegm( CvImgObsInfo * obs_info, CvEHMM * hmm )
+{
+    IPPI_CALL( icvUniformImgSegm( obs_info, hmm ));
+}
+
+CV_IMPL void
+cvInitMixSegm( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
+{
+    IPPI_CALL( icvInitMixSegm( obs_info_array, num_img, hmm ));
+}
+
+CV_IMPL void
+cvEstimateHMMStateParams( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
+{
+    IPPI_CALL( icvEstimateHMMStateParams( obs_info_array, num_img, hmm ));
+}
+
+CV_IMPL void
+cvEstimateTransProb( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
+{
+    IPPI_CALL( icvEstimateTransProb( obs_info_array, num_img, hmm ));
+}
+
+CV_IMPL void
+cvEstimateObsProb( CvImgObsInfo * obs_info, CvEHMM * hmm )
+{
+    IPPI_CALL( icvEstimateObsProb( obs_info, hmm ));
+}
+
+CV_IMPL float
+cvEViterbi( CvImgObsInfo * obs_info, CvEHMM * hmm )
+{
+    if( (obs_info == NULL) || (hmm == NULL) )
+        CV_Error( CV_BadDataPtr, "Null pointer." );
+
+    return icvEViterbi( obs_info, hmm );
+}
+
+CV_IMPL void
+cvMixSegmL2( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
+{
+    IPPI_CALL( icvMixSegmL2( obs_info_array, num_img, hmm ));
+}
+
+/* End of file */
+