X-Git-Url: http://vcs.maemo.org/git/?a=blobdiff_plain;f=cpu-all.h;h=3f92d5673ff6b9dc2e373e743ddc9485a8662501;hb=HEAD;hp=08388a3be35088e91a31e4712174c5f3a95cddaa;hpb=967032c3d5547a9973465f495f8f25e3c7967633;p=qemu diff --git a/cpu-all.h b/cpu-all.h index 08388a3..3f92d56 100644 --- a/cpu-all.h +++ b/cpu-all.h @@ -15,14 +15,13 @@ * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA */ #ifndef CPU_ALL_H #define CPU_ALL_H -#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__) -#define WORDS_ALIGNED -#endif +#include "qemu-common.h" +#include "cpu-common.h" /* some important defines: * @@ -37,7 +36,7 @@ * TARGET_WORDS_BIGENDIAN : same for target cpu */ -#include "bswap.h" +#include "softfloat.h" #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED @@ -205,12 +204,12 @@ typedef union { * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ -static inline int ldub_p(void *ptr) +static inline int ldub_p(const void *ptr) { return *(uint8_t *)ptr; } -static inline int ldsb_p(void *ptr) +static inline int ldsb_p(const void *ptr) { return *(int8_t *)ptr; } @@ -226,45 +225,45 @@ static inline void stb_p(void *ptr, int v) #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) /* conservative code for little endian unaligned accesses */ -static inline int lduw_le_p(void *ptr) +static inline int lduw_le_p(const void *ptr) { -#ifdef __powerpc__ +#ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else - uint8_t *p = ptr; + const uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } -static inline int ldsw_le_p(void *ptr) +static inline int ldsw_le_p(const void *ptr) { -#ifdef __powerpc__ +#ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else - uint8_t *p = ptr; + const uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } -static inline int ldl_le_p(void *ptr) +static inline int ldl_le_p(const void *ptr) { -#ifdef __powerpc__ +#ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else - uint8_t *p = ptr; + const uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } -static inline uint64_t ldq_le_p(void *ptr) +static inline uint64_t ldq_le_p(const void *ptr) { - uint8_t *p = ptr; + const uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl_le_p(p); v2 = ldl_le_p(p + 4); @@ -273,7 +272,7 @@ static inline uint64_t ldq_le_p(void *ptr) static inline void stw_le_p(void *ptr, int v) { -#ifdef __powerpc__ +#ifdef _ARCH_PPC __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; @@ -284,7 +283,7 @@ static inline void stw_le_p(void *ptr, int v) static inline void stl_le_p(void *ptr, int v) { -#ifdef __powerpc__ +#ifdef _ARCH_PPC __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; @@ -304,7 +303,7 @@ static inline void stq_le_p(void *ptr, uint64_t v) /* float access */ -static inline float32 ldfl_le_p(void *ptr) +static inline float32 ldfl_le_p(const void *ptr) { union { float32 f; @@ -324,7 +323,7 @@ static inline void stfl_le_p(void *ptr, float32 v) stl_le_p(ptr, u.i); } -static inline float64 ldfq_le_p(void *ptr) +static inline float64 ldfq_le_p(const void *ptr) { CPU_DoubleU u; u.l.lower = ldl_le_p(ptr); @@ -342,22 +341,22 @@ static inline void stfq_le_p(void *ptr, float64 v) #else -static inline int lduw_le_p(void *ptr) +static inline int lduw_le_p(const void *ptr) { return *(uint16_t *)ptr; } -static inline int ldsw_le_p(void *ptr) +static inline int ldsw_le_p(const void *ptr) { return *(int16_t *)ptr; } -static inline int ldl_le_p(void *ptr) +static inline int ldl_le_p(const void *ptr) { return *(uint32_t *)ptr; } -static inline uint64_t ldq_le_p(void *ptr) +static inline uint64_t ldq_le_p(const void *ptr) { return *(uint64_t *)ptr; } @@ -379,12 +378,12 @@ static inline void stq_le_p(void *ptr, uint64_t v) /* float access */ -static inline float32 ldfl_le_p(void *ptr) +static inline float32 ldfl_le_p(const void *ptr) { return *(float32 *)ptr; } -static inline float64 ldfq_le_p(void *ptr) +static inline float64 ldfq_le_p(const void *ptr) { return *(float64 *)ptr; } @@ -402,7 +401,7 @@ static inline void stfq_le_p(void *ptr, float64 v) #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) -static inline int lduw_be_p(void *ptr) +static inline int lduw_be_p(const void *ptr) { #if defined(__i386__) int val; @@ -412,12 +411,12 @@ static inline int lduw_be_p(void *ptr) : "m" (*(uint16_t *)ptr)); return val; #else - uint8_t *b = (uint8_t *) ptr; + const uint8_t *b = ptr; return ((b[0] << 8) | b[1]); #endif } -static inline int ldsw_be_p(void *ptr) +static inline int ldsw_be_p(const void *ptr) { #if defined(__i386__) int val; @@ -427,12 +426,12 @@ static inline int ldsw_be_p(void *ptr) : "m" (*(uint16_t *)ptr)); return (int16_t)val; #else - uint8_t *b = (uint8_t *) ptr; + const uint8_t *b = ptr; return (int16_t)((b[0] << 8) | b[1]); #endif } -static inline int ldl_be_p(void *ptr) +static inline int ldl_be_p(const void *ptr) { #if defined(__i386__) || defined(__x86_64__) int val; @@ -442,16 +441,16 @@ static inline int ldl_be_p(void *ptr) : "m" (*(uint32_t *)ptr)); return val; #else - uint8_t *b = (uint8_t *) ptr; + const uint8_t *b = ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; #endif } -static inline uint64_t ldq_be_p(void *ptr) +static inline uint64_t ldq_be_p(const void *ptr) { uint32_t a,b; a = ldl_be_p(ptr); - b = ldl_be_p(ptr+4); + b = ldl_be_p((uint8_t *)ptr + 4); return (((uint64_t)a<<32)|b); } @@ -488,12 +487,12 @@ static inline void stl_be_p(void *ptr, int v) static inline void stq_be_p(void *ptr, uint64_t v) { stl_be_p(ptr, v >> 32); - stl_be_p(ptr + 4, v); + stl_be_p((uint8_t *)ptr + 4, v); } /* float access */ -static inline float32 ldfl_be_p(void *ptr) +static inline float32 ldfl_be_p(const void *ptr) { union { float32 f; @@ -513,11 +512,11 @@ static inline void stfl_be_p(void *ptr, float32 v) stl_be_p(ptr, u.i); } -static inline float64 ldfq_be_p(void *ptr) +static inline float64 ldfq_be_p(const void *ptr) { CPU_DoubleU u; u.l.upper = ldl_be_p(ptr); - u.l.lower = ldl_be_p(ptr + 4); + u.l.lower = ldl_be_p((uint8_t *)ptr + 4); return u.d; } @@ -526,27 +525,27 @@ static inline void stfq_be_p(void *ptr, float64 v) CPU_DoubleU u; u.d = v; stl_be_p(ptr, u.l.upper); - stl_be_p(ptr + 4, u.l.lower); + stl_be_p((uint8_t *)ptr + 4, u.l.lower); } #else -static inline int lduw_be_p(void *ptr) +static inline int lduw_be_p(const void *ptr) { return *(uint16_t *)ptr; } -static inline int ldsw_be_p(void *ptr) +static inline int ldsw_be_p(const void *ptr) { return *(int16_t *)ptr; } -static inline int ldl_be_p(void *ptr) +static inline int ldl_be_p(const void *ptr) { return *(uint32_t *)ptr; } -static inline uint64_t ldq_be_p(void *ptr) +static inline uint64_t ldq_be_p(const void *ptr) { return *(uint64_t *)ptr; } @@ -568,12 +567,12 @@ static inline void stq_be_p(void *ptr, uint64_t v) /* float access */ -static inline float32 ldfl_be_p(void *ptr) +static inline float32 ldfl_be_p(const void *ptr) { return *(float32 *)ptr; } -static inline float64 ldfq_be_p(void *ptr) +static inline float64 ldfq_be_p(const void *ptr) { return *(float64 *)ptr; } @@ -620,15 +619,31 @@ static inline void stfq_be_p(void *ptr, float64 v) /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) +#include +#include "qemu-types.h" + /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ -//#define GUEST_BASE 0x20000000 +#if defined(CONFIG_USE_GUEST_BASE) +extern unsigned long guest_base; +#define GUEST_BASE guest_base +#else #define GUEST_BASE 0 +#endif /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) -#define h2g(x) ((target_ulong)(x - GUEST_BASE)) +#define h2g(x) ({ \ + unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ + /* Check if given address fits target address space */ \ + assert(__ret == (abi_ulong)__ret); \ + (abi_ulong)__ret; \ +}) +#define h2g_valid(x) ({ \ + unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ + (__guest == (abi_ulong)__guest); \ +}) #define saddr(x) g2h(x) #define laddr(x) g2h(x) @@ -700,7 +715,7 @@ static inline void stfq_be_p(void *ptr, float64 v) /* page related stuff */ -#define TARGET_PAGE_SIZE (1UL << TARGET_PAGE_BITS) +#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) @@ -724,10 +739,13 @@ extern unsigned long qemu_host_page_mask; #define PAGE_RESERVED 0x0020 void page_dump(FILE *f); +int walk_memory_regions(void *, + int (*fn)(void *, unsigned long, unsigned long, unsigned long)); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); int page_check_range(target_ulong start, target_ulong len, int flags); +void cpu_exec_init_all(unsigned long tb_size); CPUState *cpu_copy(CPUState *env); void cpu_dump_state(CPUState *env, FILE *f, @@ -737,14 +755,13 @@ void cpu_dump_statistics (CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags); -void cpu_abort(CPUState *env, const char *fmt, ...) - __attribute__ ((__format__ (__printf__, 2, 3))) - __attribute__ ((__noreturn__)); +void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) + __attribute__ ((__format__ (__printf__, 2, 3))); extern CPUState *first_cpu; extern CPUState *cpu_single_env; -extern int code_copy_enabled; +extern int64_t qemu_icount; +extern int use_icount; -#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */ #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */ @@ -758,10 +775,35 @@ extern int code_copy_enabled; void cpu_interrupt(CPUState *s, int mask); void cpu_reset_interrupt(CPUState *env, int mask); -int cpu_watchpoint_insert(CPUState *env, target_ulong addr); -int cpu_watchpoint_remove(CPUState *env, target_ulong addr); -int cpu_breakpoint_insert(CPUState *env, target_ulong pc); -int cpu_breakpoint_remove(CPUState *env, target_ulong pc); +void cpu_exit(CPUState *s); + +int qemu_cpu_has_work(CPUState *env); + +/* Breakpoint/watchpoint flags */ +#define BP_MEM_READ 0x01 +#define BP_MEM_WRITE 0x02 +#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) +#define BP_STOP_BEFORE_ACCESS 0x04 +#define BP_WATCHPOINT_HIT 0x08 +#define BP_GDB 0x10 +#define BP_CPU 0x20 + +int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, + CPUBreakpoint **breakpoint); +int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); +void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); +void cpu_breakpoint_remove_all(CPUState *env, int mask); +int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, + int flags, CPUWatchpoint **watchpoint); +int cpu_watchpoint_remove(CPUState *env, target_ulong addr, + target_ulong len, int flags); +void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); +void cpu_watchpoint_remove_all(CPUState *env, int mask); + +#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ +#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ +#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ + void cpu_single_step(CPUState *env, int enabled); void cpu_reset(CPUState *s); @@ -779,6 +821,7 @@ target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); #define CPU_LOG_PCALL (1 << 6) #define CPU_LOG_IOPORT (1 << 7) #define CPU_LOG_TB_CPU (1 << 8) +#define CPU_LOG_RESET (1 << 9) /* define log items */ typedef struct CPULogItem { @@ -787,7 +830,7 @@ typedef struct CPULogItem { const char *help; } CPULogItem; -extern CPULogItem cpu_log_items[]; +extern const CPULogItem cpu_log_items[]; void cpu_set_log(int log_flags); void cpu_set_log_filename(const char *filename); @@ -806,79 +849,38 @@ int cpu_inw(CPUState *env, int addr); int cpu_inl(CPUState *env, int addr); #endif -/* address in the RAM (different from a physical address) */ -typedef unsigned long ram_addr_t; - /* memory API */ -extern ram_addr_t phys_ram_size; extern int phys_ram_fd; -extern uint8_t *phys_ram_base; extern uint8_t *phys_ram_dirty; extern ram_addr_t ram_size; +extern ram_addr_t last_ram_offset; /* physical memory access */ -#define TLB_INVALID_MASK (1 << 3) -#define IO_MEM_SHIFT 4 + +/* MMIO pages are identified by a combination of an IO device index and + 3 flags. The ROMD code stores the page ram offset in iotlb entry, + so only a limited number of ids are avaiable. */ + #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT)) -#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ -#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ -#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) -#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */ -/* acts like a ROM when read and like a device when written. As an - exception, the write memory callback gets the ram offset instead of - the physical address */ -#define IO_MEM_ROMD (1) -#define IO_MEM_SUBPAGE (2) -#define IO_MEM_SUBWIDTH (4) - -typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); -typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); - -void cpu_register_physical_memory(target_phys_addr_t start_addr, - ram_addr_t size, - ram_addr_t phys_offset); -ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr); -ram_addr_t qemu_ram_alloc(ram_addr_t); -void qemu_ram_free(ram_addr_t addr); -int cpu_register_io_memory(int io_index, - CPUReadMemoryFunc **mem_read, - CPUWriteMemoryFunc **mem_write, - void *opaque); -CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index); -CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index); - -void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, - int len, int is_write); -static inline void cpu_physical_memory_read(target_phys_addr_t addr, - uint8_t *buf, int len) -{ - cpu_physical_memory_rw(addr, buf, len, 0); -} -static inline void cpu_physical_memory_write(target_phys_addr_t addr, - const uint8_t *buf, int len) -{ - cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1); -} -uint32_t ldub_phys(target_phys_addr_t addr); -uint32_t lduw_phys(target_phys_addr_t addr); -uint32_t ldl_phys(target_phys_addr_t addr); -uint64_t ldq_phys(target_phys_addr_t addr); -void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); -void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val); -void stb_phys(target_phys_addr_t addr, uint32_t val); -void stw_phys(target_phys_addr_t addr, uint32_t val); -void stl_phys(target_phys_addr_t addr, uint32_t val); -void stq_phys(target_phys_addr_t addr, uint64_t val); - -void cpu_physical_memory_write_rom(target_phys_addr_t addr, - const uint8_t *buf, int len); +/* Flags stored in the low bits of the TLB virtual address. These are + defined so that fast path ram access is all zeros. */ +/* Zero if TLB entry is valid. */ +#define TLB_INVALID_MASK (1 << 3) +/* Set if TLB entry references a clean RAM page. The iotlb entry will + contain the page physical address. */ +#define TLB_NOTDIRTY (1 << 4) +/* Set if TLB entry is an IO callback. */ +#define TLB_MMIO (1 << 5) + int cpu_memory_rw_debug(CPUState *env, target_ulong addr, uint8_t *buf, int len, int is_write); -#define VGA_DIRTY_FLAG 0x01 -#define CODE_DIRTY_FLAG 0x02 +#define VGA_DIRTY_FLAG 0x01 +#define CODE_DIRTY_FLAG 0x02 +#define KQEMU_DIRTY_FLAG 0x04 +#define MIGRATION_DIRTY_FLAG 0x08 /* read dirty bit (return 0 or 1) */ static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) @@ -901,38 +903,54 @@ void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, int dirty_flags); void cpu_tlb_update_dirty(CPUState *env); +int cpu_physical_memory_set_dirty_tracking(int enable); + +int cpu_physical_memory_get_dirty_tracking(void); + +int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, + target_phys_addr_t end_addr); + void dump_exec_info(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)); -/*******************************************/ -/* host CPU ticks (if available) */ +/* Coalesced MMIO regions are areas where write operations can be reordered. + * This usually implies that write operations are side-effect free. This allows + * batching which can make a major impact on performance when using + * virtualization. + */ +void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); -#if defined(__powerpc__) +void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); -static inline uint32_t get_tbl(void) -{ - uint32_t tbl; - asm volatile("mftb %0" : "=r" (tbl)); - return tbl; -} +/*******************************************/ +/* host CPU ticks (if available) */ -static inline uint32_t get_tbu(void) -{ - uint32_t tbl; - asm volatile("mftbu %0" : "=r" (tbl)); - return tbl; -} +#if defined(_ARCH_PPC) static inline int64_t cpu_get_real_ticks(void) { - uint32_t l, h, h1; - /* NOTE: we test if wrapping has occurred */ - do { - h = get_tbu(); - l = get_tbl(); - h1 = get_tbu(); - } while (h != h1); - return ((int64_t)h << 32) | l; + int64_t retval; +#ifdef _ARCH_PPC64 + /* This reads timebase in one 64bit go and includes Cell workaround from: + http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html + */ + __asm__ __volatile__ ( + "mftb %0\n\t" + "cmpwi %0,0\n\t" + "beq- $-8" + : "=r" (retval)); +#else + /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */ + unsigned long junk; + __asm__ __volatile__ ( + "mftbu %1\n\t" + "mftb %L0\n\t" + "mftbu %0\n\t" + "cmpw %0,%1\n\t" + "bne $-16" + : "=r" (retval), "=r" (junk)); +#endif + return retval; } #elif defined(__i386__) @@ -1052,19 +1070,6 @@ extern int64_t dev_time; extern int64_t kqemu_ret_int_count; extern int64_t kqemu_ret_excp_count; extern int64_t kqemu_ret_intr_count; - -extern int64_t dyngen_tb_count1; -extern int64_t dyngen_tb_count; -extern int64_t dyngen_op_count; -extern int64_t dyngen_old_op_count; -extern int64_t dyngen_tcg_del_op_count; -extern int dyngen_op_count_max; -extern int64_t dyngen_code_in_len; -extern int64_t dyngen_code_out_len; -extern int64_t dyngen_interm_time; -extern int64_t dyngen_code_time; -extern int64_t dyngen_restore_count; -extern int64_t dyngen_restore_time; #endif #endif /* CPU_ALL_H */