X-Git-Url: http://vcs.maemo.org/git/?a=blobdiff_plain;f=3rdparty%2Flapack%2Fdlasd5.c;fp=3rdparty%2Flapack%2Fdlasd5.c;h=0156345ab26b7fdd2e88ecbfaa4fbeb489c6598b;hb=e4c14cdbdf2fe805e79cd96ded236f57e7b89060;hp=0000000000000000000000000000000000000000;hpb=454138ff8a20f6edb9b65a910101403d8b520643;p=opencv diff --git a/3rdparty/lapack/dlasd5.c b/3rdparty/lapack/dlasd5.c new file mode 100644 index 0000000..0156345 --- /dev/null +++ b/3rdparty/lapack/dlasd5.c @@ -0,0 +1,176 @@ +#include "clapack.h" + +/* Subroutine */ int dlasd5_(integer *i__, doublereal *d__, doublereal *z__, + doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal * + work) +{ + /* System generated locals */ + doublereal d__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + doublereal b, c__, w, del, tau, delsq; + + +/* -- LAPACK auxiliary routine (version 3.1) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* This subroutine computes the square root of the I-th eigenvalue */ +/* of a positive symmetric rank-one modification of a 2-by-2 diagonal */ +/* matrix */ + +/* diag( D ) * diag( D ) + RHO * Z * transpose(Z) . */ + +/* The diagonal entries in the array D are assumed to satisfy */ + +/* 0 <= D(i) < D(j) for i < j . */ + +/* We also assume RHO > 0 and that the Euclidean norm of the vector */ +/* Z is one. */ + +/* Arguments */ +/* ========= */ + +/* I (input) INTEGER */ +/* The index of the eigenvalue to be computed. I = 1 or I = 2. */ + +/* D (input) DOUBLE PRECISION array, dimension ( 2 ) */ +/* The original eigenvalues. We assume 0 <= D(1) < D(2). */ + +/* Z (input) DOUBLE PRECISION array, dimension ( 2 ) */ +/* The components of the updating vector. */ + +/* DELTA (output) DOUBLE PRECISION array, dimension ( 2 ) */ +/* Contains (D(j) - sigma_I) in its j-th component. */ +/* The vector DELTA contains the information necessary */ +/* to construct the eigenvectors. */ + +/* RHO (input) DOUBLE PRECISION */ +/* The scalar in the symmetric updating formula. */ + +/* DSIGMA (output) DOUBLE PRECISION */ +/* The computed sigma_I, the I-th updated eigenvalue. */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension ( 2 ) */ +/* WORK contains (D(j) + sigma_I) in its j-th component. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Ren-Cang Li, Computer Science Division, University of California */ +/* at Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --work; + --delta; + --z__; + --d__; + + /* Function Body */ + del = d__[2] - d__[1]; + delsq = del * (d__[2] + d__[1]); + if (*i__ == 1) { + w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] * + z__[1] / (d__[1] * 3. + d__[2])) / del + 1.; + if (w > 0.) { + b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); + c__ = *rho * z__[1] * z__[1] * delsq; + +/* B > ZERO, always */ + +/* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */ + + tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1)))); + +/* The following TAU is DSIGMA - D( 1 ) */ + + tau /= d__[1] + sqrt(d__[1] * d__[1] + tau); + *dsigma = d__[1] + tau; + delta[1] = -tau; + delta[2] = del - tau; + work[1] = d__[1] * 2. + tau; + work[2] = d__[1] + tau + d__[2]; +/* DELTA( 1 ) = -Z( 1 ) / TAU */ +/* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */ + } else { + b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); + c__ = *rho * z__[2] * z__[2] * delsq; + +/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */ + + if (b > 0.) { + tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.)); + } else { + tau = (b - sqrt(b * b + c__ * 4.)) / 2.; + } + +/* The following TAU is DSIGMA - D( 2 ) */ + + tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1))); + *dsigma = d__[2] + tau; + delta[1] = -(del + tau); + delta[2] = -tau; + work[1] = d__[1] + tau + d__[2]; + work[2] = d__[2] * 2. + tau; +/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */ +/* DELTA( 2 ) = -Z( 2 ) / TAU */ + } +/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */ +/* DELTA( 1 ) = DELTA( 1 ) / TEMP */ +/* DELTA( 2 ) = DELTA( 2 ) / TEMP */ + } else { + +/* Now I=2 */ + + b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); + c__ = *rho * z__[2] * z__[2] * delsq; + +/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */ + + if (b > 0.) { + tau = (b + sqrt(b * b + c__ * 4.)) / 2.; + } else { + tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.)); + } + +/* The following TAU is DSIGMA - D( 2 ) */ + + tau /= d__[2] + sqrt(d__[2] * d__[2] + tau); + *dsigma = d__[2] + tau; + delta[1] = -(del + tau); + delta[2] = -tau; + work[1] = d__[1] + tau + d__[2]; + work[2] = d__[2] * 2. + tau; +/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */ +/* DELTA( 2 ) = -Z( 2 ) / TAU */ +/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */ +/* DELTA( 1 ) = DELTA( 1 ) / TEMP */ +/* DELTA( 2 ) = DELTA( 2 ) / TEMP */ + } + return 0; + +/* End of DLASD5 */ + +} /* dlasd5_ */