update
[qemu] / target-arm / op.c
index dc1c734..8a82def 100644 (file)
@@ -2,6 +2,7 @@
  *  ARM micro operations
  * 
  *  Copyright (c) 2003 Fabrice Bellard
+ *  Copyright (c) 2005 CodeSourcery, LLC
  *
  * This library is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
@@ -105,6 +106,11 @@ void OPPROTO op_movl_T1_im(void)
     T1 = PARAM1;
 }
 
+void OPPROTO op_mov_CF_T1(void)
+{
+    env->CF = ((uint32_t)T1) >> 31;
+}
+
 void OPPROTO op_movl_T2_im(void)
 {
     T2 = PARAM1;
@@ -190,10 +196,10 @@ void OPPROTO op_ ## sbc ## l_T0_T1_cc(void)     \
     src1 = T0;                                  \
     if (!env->CF) {                             \
         T0 = T0 - T1 - 1;                       \
-        env->CF = src1 >= T1;                   \
+        env->CF = src1 > T1;                    \
     } else {                                    \
         T0 = T0 - T1;                           \
-        env->CF = src1 > T1;                    \
+        env->CF = src1 >= T1;                   \
     }                                           \
     env->VF = (src1 ^ T1) & (src1 ^ T0);        \
     env->NZF = T0;                              \
@@ -245,104 +251,109 @@ void OPPROTO op_logic_T1_cc(void)
 void OPPROTO op_test_eq(void)
 {
     if (env->NZF == 0)
-        JUMP_TB(op_test_eq, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);;
     FORCE_RET();
 }
 
 void OPPROTO op_test_ne(void)
 {
     if (env->NZF != 0)
-        JUMP_TB(op_test_ne, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);;
     FORCE_RET();
 }
 
 void OPPROTO op_test_cs(void)
 {
     if (env->CF != 0)
-        JUMP_TB(op_test_cs, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_cc(void)
 {
     if (env->CF == 0)
-        JUMP_TB(op_test_cc, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_mi(void)
 {
     if ((env->NZF & 0x80000000) != 0)
-        JUMP_TB(op_test_mi, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_pl(void)
 {
     if ((env->NZF & 0x80000000) == 0)
-        JUMP_TB(op_test_pl, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_vs(void)
 {
     if ((env->VF & 0x80000000) != 0)
-        JUMP_TB(op_test_vs, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_vc(void)
 {
     if ((env->VF & 0x80000000) == 0)
-        JUMP_TB(op_test_vc, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_hi(void)
 {
     if (env->CF != 0 && env->NZF != 0)
-        JUMP_TB(op_test_hi, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_ls(void)
 {
     if (env->CF == 0 || env->NZF == 0)
-        JUMP_TB(op_test_ls, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_ge(void)
 {
     if (((env->VF ^ env->NZF) & 0x80000000) == 0)
-        JUMP_TB(op_test_ge, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_lt(void)
 {
     if (((env->VF ^ env->NZF) & 0x80000000) != 0)
-        JUMP_TB(op_test_lt, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_gt(void)
 {
     if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
-        JUMP_TB(op_test_gt, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
 void OPPROTO op_test_le(void)
 {
     if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
-        JUMP_TB(op_test_le, PARAM1, 0, PARAM2);
+        GOTO_LABEL_PARAM(1);
     FORCE_RET();
 }
 
-void OPPROTO op_jmp(void)
+void OPPROTO op_jmp0(void)
 {
-    JUMP_TB(op_jmp, PARAM1, 1, PARAM2);
+    JUMP_TB(op_jmp0, PARAM1, 0, PARAM2);
+}
+
+void OPPROTO op_jmp1(void)
+{
+    JUMP_TB(op_jmp1, PARAM1, 1, PARAM2);
 }
 
 void OPPROTO op_exit_tb(void)
@@ -794,6 +805,23 @@ void OPPROTO op_subl_T0_T1_saturate(void)
   FORCE_RET();
 }
 
+void OPPROTO op_double_T1_saturate(void)
+{
+  int32_t val;
+
+  val = T1;
+  if (val >= 0x40000000) {
+      T1 = 0x7fffffff;
+      env->QF = 1;
+  } else if (val <= (int32_t)0xc0000000) {
+      T1 = 0x80000000;
+      env->QF = 1;
+  } else {
+      T1 = val << 1;
+  }
+  FORCE_RET();
+}
+
 /* thumb shift by immediate */
 void OPPROTO op_shll_T0_im_thumb(void)
 {
@@ -813,12 +841,13 @@ void OPPROTO op_shrl_T0_im_thumb(void)
 
     shift = PARAM1;
     if (shift == 0) {
-       env->CF = 0;
+       env->CF = ((uint32_t)shift) >> 31;
        T0 = 0;
     } else {
        env->CF = (T0 >> (shift - 1)) & 1;
        T0 = T0 >> shift;
     }
+    env->NZF = T0;
     FORCE_RET();
 }
 
@@ -852,17 +881,270 @@ void OPPROTO op_undef_insn(void)
     cpu_loop_exit();
 }
 
-/* thread support */
+void OPPROTO op_debug(void)
+{
+    env->exception_index = EXCP_DEBUG;
+    cpu_loop_exit();
+}
 
-spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
+/* VFP support.  We follow the convention used for VFP instrunctions:
+   Single precition routines have a "s" suffix, double precision a
+   "d" suffix.  */
 
-void cpu_lock(void)
+#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
+
+#define VFP_BINOP(name) \
+VFP_OP(name, s)             \
+{                           \
+    FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status);    \
+}                           \
+VFP_OP(name, d)             \
+{                           \
+    FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status);    \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+#undef VFP_BINOP
+
+#define VFP_HELPER(name)  \
+VFP_OP(name, s)           \
+{                         \
+    do_vfp_##name##s();    \
+}                         \
+VFP_OP(name, d)           \
+{                         \
+    do_vfp_##name##d();    \
+}
+VFP_HELPER(abs)
+VFP_HELPER(sqrt)
+VFP_HELPER(cmp)
+VFP_HELPER(cmpe)
+#undef VFP_HELPER
+
+/* XXX: Will this do the right thing for NANs.  Should invert the signbit
+   without looking at the rest of the value.  */
+VFP_OP(neg, s)
+{
+    FT0s = float32_chs(FT0s);
+}
+
+VFP_OP(neg, d)
 {
-    spin_lock(&global_cpu_lock);
+    FT0d = float64_chs(FT0d);
 }
 
-void cpu_unlock(void)
+VFP_OP(F1_ld0, s)
 {
-    spin_unlock(&global_cpu_lock);
+    union {
+        uint32_t i;
+        float32 s;
+    } v;
+    v.i = 0;
+    FT1s = v.s;
 }
 
+VFP_OP(F1_ld0, d)
+{
+    union {
+        uint64_t i;
+        float64 d;
+    } v;
+    v.i = 0;
+    FT1d = v.d;
+}
+
+/* Helper routines to perform bitwise copies between float and int.  */
+static inline float32 vfp_itos(uint32_t i)
+{
+    union {
+        uint32_t i;
+        float32 s;
+    } v;
+
+    v.i = i;
+    return v.s;
+}
+
+static inline uint32_t vfp_stoi(float32 s)
+{
+    union {
+        uint32_t i;
+        float32 s;
+    } v;
+
+    v.s = s;
+    return v.i;
+}
+
+/* Integer to float conversion.  */
+VFP_OP(uito, s)
+{
+    FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
+}
+
+VFP_OP(uito, d)
+{
+    FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
+}
+
+VFP_OP(sito, s)
+{
+    FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
+}
+
+VFP_OP(sito, d)
+{
+    FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
+}
+
+/* Float to integer conversion.  */
+VFP_OP(toui, s)
+{
+    FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
+}
+
+VFP_OP(toui, d)
+{
+    FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
+}
+
+VFP_OP(tosi, s)
+{
+    FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
+}
+
+VFP_OP(tosi, d)
+{
+    FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
+}
+
+/* TODO: Set rounding mode properly.  */
+VFP_OP(touiz, s)
+{
+    FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
+}
+
+VFP_OP(touiz, d)
+{
+    FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
+}
+
+VFP_OP(tosiz, s)
+{
+    FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
+}
+
+VFP_OP(tosiz, d)
+{
+    FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
+}
+
+/* floating point conversion */
+VFP_OP(fcvtd, s)
+{
+    FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
+}
+
+VFP_OP(fcvts, d)
+{
+    FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
+}
+
+/* Get and Put values from registers.  */
+VFP_OP(getreg_F0, d)
+{
+  FT0d = *(float64 *)((char *) env + PARAM1);
+}
+
+VFP_OP(getreg_F0, s)
+{
+  FT0s = *(float32 *)((char *) env + PARAM1);
+}
+
+VFP_OP(getreg_F1, d)
+{
+  FT1d = *(float64 *)((char *) env + PARAM1);
+}
+
+VFP_OP(getreg_F1, s)
+{
+  FT1s = *(float32 *)((char *) env + PARAM1);
+}
+
+VFP_OP(setreg_F0, d)
+{
+  *(float64 *)((char *) env + PARAM1) = FT0d;
+}
+
+VFP_OP(setreg_F0, s)
+{
+  *(float32 *)((char *) env + PARAM1) = FT0s;
+}
+
+void OPPROTO op_vfp_movl_T0_fpscr(void)
+{
+    do_vfp_get_fpscr ();
+}
+
+void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
+{
+    T0 = env->vfp.fpscr & (0xf << 28);
+}
+
+void OPPROTO op_vfp_movl_fpscr_T0(void)
+{
+    do_vfp_set_fpscr();
+}
+
+/* Move between FT0s to T0  */
+void OPPROTO op_vfp_mrs(void)
+{
+    T0 = vfp_stoi(FT0s);
+}
+
+void OPPROTO op_vfp_msr(void)
+{
+    FT0s = vfp_itos(T0);
+}
+
+/* Move between FT0d and {T0,T1} */
+void OPPROTO op_vfp_mrrd(void)
+{
+    CPU_DoubleU u;
+    
+    u.d = FT0d;
+    T0 = u.l.lower;
+    T1 = u.l.upper;
+}
+
+void OPPROTO op_vfp_mdrr(void)
+{
+    CPU_DoubleU u;
+    
+    u.l.lower = T0;
+    u.l.upper = T1;
+    FT0d = u.d;
+}
+
+/* Floating point load/store.  Address is in T1 */
+void OPPROTO op_vfp_lds(void)
+{
+    FT0s = ldfl((void *)T1);
+}
+
+void OPPROTO op_vfp_ldd(void)
+{
+    FT0d = ldfq((void *)T1);
+}
+
+void OPPROTO op_vfp_sts(void)
+{
+    stfl((void *)T1, FT0s);
+}
+
+void OPPROTO op_vfp_std(void)
+{
+    stfq((void *)T1, FT0d);
+}