Braille device support
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @end itemize
91
92 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
93
94 @node Installation
95 @chapter Installation
96
97 If you want to compile QEMU yourself, see @ref{compilation}.
98
99 @menu
100 * install_linux::   Linux
101 * install_windows:: Windows
102 * install_mac::     Macintosh
103 @end menu
104
105 @node install_linux
106 @section Linux
107
108 If a precompiled package is available for your distribution - you just
109 have to install it. Otherwise, see @ref{compilation}.
110
111 @node install_windows
112 @section Windows
113
114 Download the experimental binary installer at
115 @url{http://www.free.oszoo.org/@/download.html}.
116
117 @node install_mac
118 @section Mac OS X
119
120 Download the experimental binary installer at
121 @url{http://www.free.oszoo.org/@/download.html}.
122
123 @node QEMU PC System emulator
124 @chapter QEMU PC System emulator
125
126 @menu
127 * pcsys_introduction:: Introduction
128 * pcsys_quickstart::   Quick Start
129 * sec_invocation::     Invocation
130 * pcsys_keys::         Keys
131 * pcsys_monitor::      QEMU Monitor
132 * disk_images::        Disk Images
133 * pcsys_network::      Network emulation
134 * direct_linux_boot::  Direct Linux Boot
135 * pcsys_usb::          USB emulation
136 * vnc_security::       VNC security
137 * gdb_usage::          GDB usage
138 * pcsys_os_specific::  Target OS specific information
139 @end menu
140
141 @node pcsys_introduction
142 @section Introduction
143
144 @c man begin DESCRIPTION
145
146 The QEMU PC System emulator simulates the
147 following peripherals:
148
149 @itemize @minus
150 @item
151 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
152 @item
153 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
154 extensions (hardware level, including all non standard modes).
155 @item
156 PS/2 mouse and keyboard
157 @item
158 2 PCI IDE interfaces with hard disk and CD-ROM support
159 @item
160 Floppy disk
161 @item
162 PCI/ISA PCI network adapters
163 @item
164 Serial ports
165 @item
166 Creative SoundBlaster 16 sound card
167 @item
168 ENSONIQ AudioPCI ES1370 sound card
169 @item
170 Intel 82801AA AC97 Audio compatible sound card
171 @item
172 Adlib(OPL2) - Yamaha YM3812 compatible chip
173 @item
174 Gravis Ultrasound GF1 sound card
175 @item
176 PCI UHCI USB controller and a virtual USB hub.
177 @end itemize
178
179 SMP is supported with up to 255 CPUs.
180
181 Note that adlib, ac97 and gus are only available when QEMU was configured
182 with --enable-adlib, --enable-ac97 or --enable-gus respectively.
183
184 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
185 VGA BIOS.
186
187 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
188
189 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
190 by Tibor "TS" Schütz.
191
192 @c man end
193
194 @node pcsys_quickstart
195 @section Quick Start
196
197 Download and uncompress the linux image (@file{linux.img}) and type:
198
199 @example
200 qemu linux.img
201 @end example
202
203 Linux should boot and give you a prompt.
204
205 @node sec_invocation
206 @section Invocation
207
208 @example
209 @c man begin SYNOPSIS
210 usage: qemu [options] [@var{disk_image}]
211 @c man end
212 @end example
213
214 @c man begin OPTIONS
215 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
216
217 General options:
218 @table @option
219 @item -M @var{machine}
220 Select the emulated @var{machine} (@code{-M ?} for list)
221
222 @item -fda @var{file}
223 @item -fdb @var{file}
224 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
225 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
226
227 @item -hda @var{file}
228 @item -hdb @var{file}
229 @item -hdc @var{file}
230 @item -hdd @var{file}
231 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
232
233 @item -cdrom @var{file}
234 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
235 @option{-cdrom} at the same time). You can use the host CD-ROM by
236 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
237
238 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
239
240 Define a new drive. Valid options are:
241
242 @table @code
243 @item file=@var{file}
244 This option defines which disk image (@pxref{disk_images}) to use with
245 this drive. If the filename contains comma, you must double it
246 (for instance, "file=my,,file" to use file "my,file").
247 @item if=@var{interface}
248 This option defines on which type on interface the drive is connected.
249 Available types are: ide, scsi, sd, mtd, floppy, pflash.
250 @item bus=@var{bus},unit=@var{unit}
251 These options define where is connected the drive by defining the bus number and
252 the unit id.
253 @item index=@var{index}
254 This option defines where is connected the drive by using an index in the list
255 of available connectors of a given interface type.
256 @item media=@var{media}
257 This option defines the type of the media: disk or cdrom.
258 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
259 These options have the same definition as they have in @option{-hdachs}.
260 @item snapshot=@var{snapshot}
261 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
262 @item cache=@var{cache}
263 @var{cache} is "on" or "off" and allows to disable host cache to access data.
264 @end table
265
266 Instead of @option{-cdrom} you can use:
267 @example
268 qemu -drive file=file,index=2,media=cdrom
269 @end example
270
271 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
272 use:
273 @example
274 qemu -drive file=file,index=0,media=disk
275 qemu -drive file=file,index=1,media=disk
276 qemu -drive file=file,index=2,media=disk
277 qemu -drive file=file,index=3,media=disk
278 @end example
279
280 You can connect a CDROM to the slave of ide0:
281 @example
282 qemu -drive file=file,if=ide,index=1,media=cdrom
283 @end example
284
285 If you don't specify the "file=" argument, you define an empty drive:
286 @example
287 qemu -drive if=ide,index=1,media=cdrom
288 @end example
289
290 You can connect a SCSI disk with unit ID 6 on the bus #0:
291 @example
292 qemu -drive file=file,if=scsi,bus=0,unit=6
293 @end example
294
295 Instead of @option{-fda}, @option{-fdb}, you can use:
296 @example
297 qemu -drive file=file,index=0,if=floppy
298 qemu -drive file=file,index=1,if=floppy
299 @end example
300
301 By default, @var{interface} is "ide" and @var{index} is automatically
302 incremented:
303 @example
304 qemu -drive file=a -drive file=b"
305 @end example
306 is interpreted like:
307 @example
308 qemu -hda a -hdb b
309 @end example
310
311 @item -boot [a|c|d|n]
312 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
313 is the default.
314
315 @item -snapshot
316 Write to temporary files instead of disk image files. In this case,
317 the raw disk image you use is not written back. You can however force
318 the write back by pressing @key{C-a s} (@pxref{disk_images}).
319
320 @item -no-fd-bootchk
321 Disable boot signature checking for floppy disks in Bochs BIOS. It may
322 be needed to boot from old floppy disks.
323
324 @item -m @var{megs}
325 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
326
327 @item -smp @var{n}
328 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
329 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
330 to 4.
331
332 @item -audio-help
333
334 Will show the audio subsystem help: list of drivers, tunable
335 parameters.
336
337 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338
339 Enable audio and selected sound hardware. Use ? to print all
340 available sound hardware.
341
342 @example
343 qemu -soundhw sb16,adlib hda
344 qemu -soundhw es1370 hda
345 qemu -soundhw ac97 hda
346 qemu -soundhw all hda
347 qemu -soundhw ?
348 @end example
349
350 Note that Linux's i810_audio OSS kernel (for AC97) module might
351 require manually specifying clocking.
352
353 @example
354 modprobe i810_audio clocking=48000
355 @end example
356
357 @item -localtime
358 Set the real time clock to local time (the default is to UTC
359 time). This option is needed to have correct date in MS-DOS or
360 Windows.
361
362 @item -startdate @var{date}
363 Set the initial date of the real time clock. Valid format for
364 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
365 @code{2006-06-17}. The default value is @code{now}.
366
367 @item -pidfile @var{file}
368 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
369 from a script.
370
371 @item -daemonize
372 Daemonize the QEMU process after initialization.  QEMU will not detach from
373 standard IO until it is ready to receive connections on any of its devices.
374 This option is a useful way for external programs to launch QEMU without having
375 to cope with initialization race conditions.
376
377 @item -win2k-hack
378 Use it when installing Windows 2000 to avoid a disk full bug. After
379 Windows 2000 is installed, you no longer need this option (this option
380 slows down the IDE transfers).
381
382 @item -option-rom @var{file}
383 Load the contents of @var{file} as an option ROM.
384 This option is useful to load things like EtherBoot.
385
386 @item -name @var{name}
387 Sets the @var{name} of the guest.
388 This name will be display in the SDL window caption.
389 The @var{name} will also be used for the VNC server.
390
391 @end table
392
393 Display options:
394 @table @option
395
396 @item -nographic
397
398 Normally, QEMU uses SDL to display the VGA output. With this option,
399 you can totally disable graphical output so that QEMU is a simple
400 command line application. The emulated serial port is redirected on
401 the console. Therefore, you can still use QEMU to debug a Linux kernel
402 with a serial console.
403
404 @item -curses
405
406 Normally, QEMU uses SDL to display the VGA output.  With this option,
407 QEMU can display the VGA output when in text mode using a 
408 curses/ncurses interface.  Nothing is displayed in graphical mode.
409
410 @item -no-frame
411
412 Do not use decorations for SDL windows and start them using the whole
413 available screen space. This makes the using QEMU in a dedicated desktop
414 workspace more convenient.
415
416 @item -full-screen
417 Start in full screen.
418
419 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
420
421 Normally, QEMU uses SDL to display the VGA output.  With this option,
422 you can have QEMU listen on VNC display @var{display} and redirect the VGA
423 display over the VNC session.  It is very useful to enable the usb
424 tablet device when using this option (option @option{-usbdevice
425 tablet}). When using the VNC display, you must use the @option{-k}
426 parameter to set the keyboard layout if you are not using en-us. Valid
427 syntax for the @var{display} is
428
429 @table @code
430
431 @item @var{host}:@var{d}
432
433 TCP connections will only be allowed from @var{host} on display @var{d}.
434 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
435 be omitted in which case the server will accept connections from any host.
436
437 @item @code{unix}:@var{path}
438
439 Connections will be allowed over UNIX domain sockets where @var{path} is the
440 location of a unix socket to listen for connections on.
441
442 @item none
443
444 VNC is initialized but not started. The monitor @code{change} command
445 can be used to later start the VNC server.
446
447 @end table
448
449 Following the @var{display} value there may be one or more @var{option} flags
450 separated by commas. Valid options are
451
452 @table @code
453
454 @item reverse
455
456 Connect to a listening VNC client via a ``reverse'' connection. The
457 client is specified by the @var{display}. For reverse network
458 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
459 is a TCP port number, not a display number.
460
461 @item password
462
463 Require that password based authentication is used for client connections.
464 The password must be set separately using the @code{change} command in the
465 @ref{pcsys_monitor}
466
467 @item tls
468
469 Require that client use TLS when communicating with the VNC server. This
470 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
471 attack. It is recommended that this option be combined with either the
472 @var{x509} or @var{x509verify} options.
473
474 @item x509=@var{/path/to/certificate/dir}
475
476 Valid if @option{tls} is specified. Require that x509 credentials are used
477 for negotiating the TLS session. The server will send its x509 certificate
478 to the client. It is recommended that a password be set on the VNC server
479 to provide authentication of the client when this is used. The path following
480 this option specifies where the x509 certificates are to be loaded from.
481 See the @ref{vnc_security} section for details on generating certificates.
482
483 @item x509verify=@var{/path/to/certificate/dir}
484
485 Valid if @option{tls} is specified. Require that x509 credentials are used
486 for negotiating the TLS session. The server will send its x509 certificate
487 to the client, and request that the client send its own x509 certificate.
488 The server will validate the client's certificate against the CA certificate,
489 and reject clients when validation fails. If the certificate authority is
490 trusted, this is a sufficient authentication mechanism. You may still wish
491 to set a password on the VNC server as a second authentication layer. The
492 path following this option specifies where the x509 certificates are to
493 be loaded from. See the @ref{vnc_security} section for details on generating
494 certificates.
495
496 @end table
497
498 @item -k @var{language}
499
500 Use keyboard layout @var{language} (for example @code{fr} for
501 French). This option is only needed where it is not easy to get raw PC
502 keycodes (e.g. on Macs, with some X11 servers or with a VNC
503 display). You don't normally need to use it on PC/Linux or PC/Windows
504 hosts.
505
506 The available layouts are:
507 @example
508 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
509 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
510 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
511 @end example
512
513 The default is @code{en-us}.
514
515 @end table
516
517 USB options:
518 @table @option
519
520 @item -usb
521 Enable the USB driver (will be the default soon)
522
523 @item -usbdevice @var{devname}
524 Add the USB device @var{devname}. @xref{usb_devices}.
525
526 @table @code
527
528 @item mouse
529 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
530
531 @item tablet
532 Pointer device that uses absolute coordinates (like a touchscreen). This
533 means qemu is able to report the mouse position without having to grab the
534 mouse. Also overrides the PS/2 mouse emulation when activated.
535
536 @item disk:file
537 Mass storage device based on file
538
539 @item host:bus.addr
540 Pass through the host device identified by bus.addr (Linux only).
541
542 @item host:vendor_id:product_id
543 Pass through the host device identified by vendor_id:product_id (Linux only).
544
545 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
546 Serial converter to host character device @var{dev}, see @code{-serial} for the
547 available devices.
548
549 @item braille
550 Braille device.  This will use BrlAPI to display the braille output on a real
551 or fake device.
552
553 @end table
554
555 @end table
556
557 Network options:
558
559 @table @option
560
561 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
562 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
563 = 0 is the default). The NIC is an ne2k_pci by default on the PC
564 target. Optionally, the MAC address can be changed. If no
565 @option{-net} option is specified, a single NIC is created.
566 Qemu can emulate several different models of network card.
567 Valid values for @var{type} are
568 @code{i82551}, @code{i82557b}, @code{i82559er},
569 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
570 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
571 Not all devices are supported on all targets.  Use -net nic,model=?
572 for a list of available devices for your target.
573
574 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
575 Use the user mode network stack which requires no administrator
576 privilege to run.  @option{hostname=name} can be used to specify the client
577 hostname reported by the builtin DHCP server.
578
579 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
580 Connect the host TAP network interface @var{name} to VLAN @var{n} and
581 use the network script @var{file} to configure it. The default
582 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
583 disable script execution. If @var{name} is not
584 provided, the OS automatically provides one. @option{fd}=@var{h} can be
585 used to specify the handle of an already opened host TAP interface. Example:
586
587 @example
588 qemu linux.img -net nic -net tap
589 @end example
590
591 More complicated example (two NICs, each one connected to a TAP device)
592 @example
593 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
594                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
595 @end example
596
597
598 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
599
600 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
601 machine using a TCP socket connection. If @option{listen} is
602 specified, QEMU waits for incoming connections on @var{port}
603 (@var{host} is optional). @option{connect} is used to connect to
604 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
605 specifies an already opened TCP socket.
606
607 Example:
608 @example
609 # launch a first QEMU instance
610 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
611                -net socket,listen=:1234
612 # connect the VLAN 0 of this instance to the VLAN 0
613 # of the first instance
614 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
615                -net socket,connect=127.0.0.1:1234
616 @end example
617
618 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
619
620 Create a VLAN @var{n} shared with another QEMU virtual
621 machines using a UDP multicast socket, effectively making a bus for
622 every QEMU with same multicast address @var{maddr} and @var{port}.
623 NOTES:
624 @enumerate
625 @item
626 Several QEMU can be running on different hosts and share same bus (assuming
627 correct multicast setup for these hosts).
628 @item
629 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
630 @url{http://user-mode-linux.sf.net}.
631 @item
632 Use @option{fd=h} to specify an already opened UDP multicast socket.
633 @end enumerate
634
635 Example:
636 @example
637 # launch one QEMU instance
638 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
639                -net socket,mcast=230.0.0.1:1234
640 # launch another QEMU instance on same "bus"
641 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
642                -net socket,mcast=230.0.0.1:1234
643 # launch yet another QEMU instance on same "bus"
644 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
645                -net socket,mcast=230.0.0.1:1234
646 @end example
647
648 Example (User Mode Linux compat.):
649 @example
650 # launch QEMU instance (note mcast address selected
651 # is UML's default)
652 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
653                -net socket,mcast=239.192.168.1:1102
654 # launch UML
655 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
656 @end example
657
658 @item -net none
659 Indicate that no network devices should be configured. It is used to
660 override the default configuration (@option{-net nic -net user}) which
661 is activated if no @option{-net} options are provided.
662
663 @item -tftp @var{dir}
664 When using the user mode network stack, activate a built-in TFTP
665 server. The files in @var{dir} will be exposed as the root of a TFTP server.
666 The TFTP client on the guest must be configured in binary mode (use the command
667 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
668 usual 10.0.2.2.
669
670 @item -bootp @var{file}
671 When using the user mode network stack, broadcast @var{file} as the BOOTP
672 filename.  In conjunction with @option{-tftp}, this can be used to network boot
673 a guest from a local directory.
674
675 Example (using pxelinux):
676 @example
677 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
678 @end example
679
680 @item -smb @var{dir}
681 When using the user mode network stack, activate a built-in SMB
682 server so that Windows OSes can access to the host files in @file{@var{dir}}
683 transparently.
684
685 In the guest Windows OS, the line:
686 @example
687 10.0.2.4 smbserver
688 @end example
689 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
690 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
691
692 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
693
694 Note that a SAMBA server must be installed on the host OS in
695 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
696 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
697
698 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
699
700 When using the user mode network stack, redirect incoming TCP or UDP
701 connections to the host port @var{host-port} to the guest
702 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
703 is not specified, its value is 10.0.2.15 (default address given by the
704 built-in DHCP server).
705
706 For example, to redirect host X11 connection from screen 1 to guest
707 screen 0, use the following:
708
709 @example
710 # on the host
711 qemu -redir tcp:6001::6000 [...]
712 # this host xterm should open in the guest X11 server
713 xterm -display :1
714 @end example
715
716 To redirect telnet connections from host port 5555 to telnet port on
717 the guest, use the following:
718
719 @example
720 # on the host
721 qemu -redir tcp:5555::23 [...]
722 telnet localhost 5555
723 @end example
724
725 Then when you use on the host @code{telnet localhost 5555}, you
726 connect to the guest telnet server.
727
728 @end table
729
730 Linux boot specific: When using these options, you can use a given
731 Linux kernel without installing it in the disk image. It can be useful
732 for easier testing of various kernels.
733
734 @table @option
735
736 @item -kernel @var{bzImage}
737 Use @var{bzImage} as kernel image.
738
739 @item -append @var{cmdline}
740 Use @var{cmdline} as kernel command line
741
742 @item -initrd @var{file}
743 Use @var{file} as initial ram disk.
744
745 @end table
746
747 Debug/Expert options:
748 @table @option
749
750 @item -serial @var{dev}
751 Redirect the virtual serial port to host character device
752 @var{dev}. The default device is @code{vc} in graphical mode and
753 @code{stdio} in non graphical mode.
754
755 This option can be used several times to simulate up to 4 serials
756 ports.
757
758 Use @code{-serial none} to disable all serial ports.
759
760 Available character devices are:
761 @table @code
762 @item vc[:WxH]
763 Virtual console. Optionally, a width and height can be given in pixel with
764 @example
765 vc:800x600
766 @end example
767 It is also possible to specify width or height in characters:
768 @example
769 vc:80Cx24C
770 @end example
771 @item pty
772 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
773 @item none
774 No device is allocated.
775 @item null
776 void device
777 @item /dev/XXX
778 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
779 parameters are set according to the emulated ones.
780 @item /dev/parport@var{N}
781 [Linux only, parallel port only] Use host parallel port
782 @var{N}. Currently SPP and EPP parallel port features can be used.
783 @item file:@var{filename}
784 Write output to @var{filename}. No character can be read.
785 @item stdio
786 [Unix only] standard input/output
787 @item pipe:@var{filename}
788 name pipe @var{filename}
789 @item COM@var{n}
790 [Windows only] Use host serial port @var{n}
791 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
792 This implements UDP Net Console.
793 When @var{remote_host} or @var{src_ip} are not specified
794 they default to @code{0.0.0.0}.
795 When not using a specified @var{src_port} a random port is automatically chosen.
796
797 If you just want a simple readonly console you can use @code{netcat} or
798 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
799 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
800 will appear in the netconsole session.
801
802 If you plan to send characters back via netconsole or you want to stop
803 and start qemu a lot of times, you should have qemu use the same
804 source port each time by using something like @code{-serial
805 udp::4555@@:4556} to qemu. Another approach is to use a patched
806 version of netcat which can listen to a TCP port and send and receive
807 characters via udp.  If you have a patched version of netcat which
808 activates telnet remote echo and single char transfer, then you can
809 use the following options to step up a netcat redirector to allow
810 telnet on port 5555 to access the qemu port.
811 @table @code
812 @item Qemu Options:
813 -serial udp::4555@@:4556
814 @item netcat options:
815 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
816 @item telnet options:
817 localhost 5555
818 @end table
819
820
821 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
822 The TCP Net Console has two modes of operation.  It can send the serial
823 I/O to a location or wait for a connection from a location.  By default
824 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
825 the @var{server} option QEMU will wait for a client socket application
826 to connect to the port before continuing, unless the @code{nowait}
827 option was specified.  The @code{nodelay} option disables the Nagle buffering
828 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
829 one TCP connection at a time is accepted. You can use @code{telnet} to
830 connect to the corresponding character device.
831 @table @code
832 @item Example to send tcp console to 192.168.0.2 port 4444
833 -serial tcp:192.168.0.2:4444
834 @item Example to listen and wait on port 4444 for connection
835 -serial tcp::4444,server
836 @item Example to not wait and listen on ip 192.168.0.100 port 4444
837 -serial tcp:192.168.0.100:4444,server,nowait
838 @end table
839
840 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
841 The telnet protocol is used instead of raw tcp sockets.  The options
842 work the same as if you had specified @code{-serial tcp}.  The
843 difference is that the port acts like a telnet server or client using
844 telnet option negotiation.  This will also allow you to send the
845 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
846 sequence.  Typically in unix telnet you do it with Control-] and then
847 type "send break" followed by pressing the enter key.
848
849 @item unix:@var{path}[,server][,nowait]
850 A unix domain socket is used instead of a tcp socket.  The option works the
851 same as if you had specified @code{-serial tcp} except the unix domain socket
852 @var{path} is used for connections.
853
854 @item mon:@var{dev_string}
855 This is a special option to allow the monitor to be multiplexed onto
856 another serial port.  The monitor is accessed with key sequence of
857 @key{Control-a} and then pressing @key{c}. See monitor access
858 @ref{pcsys_keys} in the -nographic section for more keys.
859 @var{dev_string} should be any one of the serial devices specified
860 above.  An example to multiplex the monitor onto a telnet server
861 listening on port 4444 would be:
862 @table @code
863 @item -serial mon:telnet::4444,server,nowait
864 @end table
865
866 @item braille
867 Braille device.  This will use BrlAPI to display the braille output on a real
868 or fake device.
869
870 @end table
871
872 @item -parallel @var{dev}
873 Redirect the virtual parallel port to host device @var{dev} (same
874 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
875 be used to use hardware devices connected on the corresponding host
876 parallel port.
877
878 This option can be used several times to simulate up to 3 parallel
879 ports.
880
881 Use @code{-parallel none} to disable all parallel ports.
882
883 @item -monitor @var{dev}
884 Redirect the monitor to host device @var{dev} (same devices as the
885 serial port).
886 The default device is @code{vc} in graphical mode and @code{stdio} in
887 non graphical mode.
888
889 @item -echr numeric_ascii_value
890 Change the escape character used for switching to the monitor when using
891 monitor and serial sharing.  The default is @code{0x01} when using the
892 @code{-nographic} option.  @code{0x01} is equal to pressing
893 @code{Control-a}.  You can select a different character from the ascii
894 control keys where 1 through 26 map to Control-a through Control-z.  For
895 instance you could use the either of the following to change the escape
896 character to Control-t.
897 @table @code
898 @item -echr 0x14
899 @item -echr 20
900 @end table
901
902 @item -s
903 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
904 @item -p @var{port}
905 Change gdb connection port.  @var{port} can be either a decimal number
906 to specify a TCP port, or a host device (same devices as the serial port).
907 @item -S
908 Do not start CPU at startup (you must type 'c' in the monitor).
909 @item -d
910 Output log in /tmp/qemu.log
911 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
912 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
913 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
914 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
915 all those parameters. This option is useful for old MS-DOS disk
916 images.
917
918 @item -L path
919 Set the directory for the BIOS, VGA BIOS and keymaps.
920
921 @item -std-vga
922 Simulate a standard VGA card with Bochs VBE extensions (default is
923 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
924 VBE extensions (e.g. Windows XP) and if you want to use high
925 resolution modes (>= 1280x1024x16) then you should use this option.
926
927 @item -no-acpi
928 Disable ACPI (Advanced Configuration and Power Interface) support. Use
929 it if your guest OS complains about ACPI problems (PC target machine
930 only).
931
932 @item -no-reboot
933 Exit instead of rebooting.
934
935 @item -loadvm file
936 Start right away with a saved state (@code{loadvm} in monitor)
937
938 @item -semihosting
939 Enable semihosting syscall emulation (ARM and M68K target machines only).
940
941 On ARM this implements the "Angel" interface.
942 On M68K this implements the "ColdFire GDB" interface used by libgloss.
943
944 Note that this allows guest direct access to the host filesystem,
945 so should only be used with trusted guest OS.
946 @end table
947
948 @c man end
949
950 @node pcsys_keys
951 @section Keys
952
953 @c man begin OPTIONS
954
955 During the graphical emulation, you can use the following keys:
956 @table @key
957 @item Ctrl-Alt-f
958 Toggle full screen
959
960 @item Ctrl-Alt-n
961 Switch to virtual console 'n'. Standard console mappings are:
962 @table @emph
963 @item 1
964 Target system display
965 @item 2
966 Monitor
967 @item 3
968 Serial port
969 @end table
970
971 @item Ctrl-Alt
972 Toggle mouse and keyboard grab.
973 @end table
974
975 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
976 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
977
978 During emulation, if you are using the @option{-nographic} option, use
979 @key{Ctrl-a h} to get terminal commands:
980
981 @table @key
982 @item Ctrl-a h
983 Print this help
984 @item Ctrl-a x
985 Exit emulator
986 @item Ctrl-a s
987 Save disk data back to file (if -snapshot)
988 @item Ctrl-a t
989 toggle console timestamps
990 @item Ctrl-a b
991 Send break (magic sysrq in Linux)
992 @item Ctrl-a c
993 Switch between console and monitor
994 @item Ctrl-a Ctrl-a
995 Send Ctrl-a
996 @end table
997 @c man end
998
999 @ignore
1000
1001 @c man begin SEEALSO
1002 The HTML documentation of QEMU for more precise information and Linux
1003 user mode emulator invocation.
1004 @c man end
1005
1006 @c man begin AUTHOR
1007 Fabrice Bellard
1008 @c man end
1009
1010 @end ignore
1011
1012 @node pcsys_monitor
1013 @section QEMU Monitor
1014
1015 The QEMU monitor is used to give complex commands to the QEMU
1016 emulator. You can use it to:
1017
1018 @itemize @minus
1019
1020 @item
1021 Remove or insert removable media images
1022 (such as CD-ROM or floppies).
1023
1024 @item
1025 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1026 from a disk file.
1027
1028 @item Inspect the VM state without an external debugger.
1029
1030 @end itemize
1031
1032 @subsection Commands
1033
1034 The following commands are available:
1035
1036 @table @option
1037
1038 @item help or ? [@var{cmd}]
1039 Show the help for all commands or just for command @var{cmd}.
1040
1041 @item commit
1042 Commit changes to the disk images (if -snapshot is used).
1043
1044 @item info @var{subcommand}
1045 Show various information about the system state.
1046
1047 @table @option
1048 @item info network
1049 show the various VLANs and the associated devices
1050 @item info block
1051 show the block devices
1052 @item info registers
1053 show the cpu registers
1054 @item info history
1055 show the command line history
1056 @item info pci
1057 show emulated PCI device
1058 @item info usb
1059 show USB devices plugged on the virtual USB hub
1060 @item info usbhost
1061 show all USB host devices
1062 @item info capture
1063 show information about active capturing
1064 @item info snapshots
1065 show list of VM snapshots
1066 @item info mice
1067 show which guest mouse is receiving events
1068 @end table
1069
1070 @item q or quit
1071 Quit the emulator.
1072
1073 @item eject [-f] @var{device}
1074 Eject a removable medium (use -f to force it).
1075
1076 @item change @var{device} @var{setting}
1077
1078 Change the configuration of a device.
1079
1080 @table @option
1081 @item change @var{diskdevice} @var{filename}
1082 Change the medium for a removable disk device to point to @var{filename}. eg
1083
1084 @example
1085 (qemu) change ide1-cd0 /path/to/some.iso
1086 @end example
1087
1088 @item change vnc @var{display},@var{options}
1089 Change the configuration of the VNC server. The valid syntax for @var{display}
1090 and @var{options} are described at @ref{sec_invocation}. eg
1091
1092 @example
1093 (qemu) change vnc localhost:1
1094 @end example
1095
1096 @item change vnc password
1097
1098 Change the password associated with the VNC server. The monitor will prompt for
1099 the new password to be entered. VNC passwords are only significant upto 8 letters.
1100 eg.
1101
1102 @example
1103 (qemu) change vnc password
1104 Password: ********
1105 @end example
1106
1107 @end table
1108
1109 @item screendump @var{filename}
1110 Save screen into PPM image @var{filename}.
1111
1112 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1113 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1114 with optional scroll axis @var{dz}.
1115
1116 @item mouse_button @var{val}
1117 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1118
1119 @item mouse_set @var{index}
1120 Set which mouse device receives events at given @var{index}, index
1121 can be obtained with
1122 @example
1123 info mice
1124 @end example
1125
1126 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1127 Capture audio into @var{filename}. Using sample rate @var{frequency}
1128 bits per sample @var{bits} and number of channels @var{channels}.
1129
1130 Defaults:
1131 @itemize @minus
1132 @item Sample rate = 44100 Hz - CD quality
1133 @item Bits = 16
1134 @item Number of channels = 2 - Stereo
1135 @end itemize
1136
1137 @item stopcapture @var{index}
1138 Stop capture with a given @var{index}, index can be obtained with
1139 @example
1140 info capture
1141 @end example
1142
1143 @item log @var{item1}[,...]
1144 Activate logging of the specified items to @file{/tmp/qemu.log}.
1145
1146 @item savevm [@var{tag}|@var{id}]
1147 Create a snapshot of the whole virtual machine. If @var{tag} is
1148 provided, it is used as human readable identifier. If there is already
1149 a snapshot with the same tag or ID, it is replaced. More info at
1150 @ref{vm_snapshots}.
1151
1152 @item loadvm @var{tag}|@var{id}
1153 Set the whole virtual machine to the snapshot identified by the tag
1154 @var{tag} or the unique snapshot ID @var{id}.
1155
1156 @item delvm @var{tag}|@var{id}
1157 Delete the snapshot identified by @var{tag} or @var{id}.
1158
1159 @item stop
1160 Stop emulation.
1161
1162 @item c or cont
1163 Resume emulation.
1164
1165 @item gdbserver [@var{port}]
1166 Start gdbserver session (default @var{port}=1234)
1167
1168 @item x/fmt @var{addr}
1169 Virtual memory dump starting at @var{addr}.
1170
1171 @item xp /@var{fmt} @var{addr}
1172 Physical memory dump starting at @var{addr}.
1173
1174 @var{fmt} is a format which tells the command how to format the
1175 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1176
1177 @table @var
1178 @item count
1179 is the number of items to be dumped.
1180
1181 @item format
1182 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1183 c (char) or i (asm instruction).
1184
1185 @item size
1186 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1187 @code{h} or @code{w} can be specified with the @code{i} format to
1188 respectively select 16 or 32 bit code instruction size.
1189
1190 @end table
1191
1192 Examples:
1193 @itemize
1194 @item
1195 Dump 10 instructions at the current instruction pointer:
1196 @example
1197 (qemu) x/10i $eip
1198 0x90107063:  ret
1199 0x90107064:  sti
1200 0x90107065:  lea    0x0(%esi,1),%esi
1201 0x90107069:  lea    0x0(%edi,1),%edi
1202 0x90107070:  ret
1203 0x90107071:  jmp    0x90107080
1204 0x90107073:  nop
1205 0x90107074:  nop
1206 0x90107075:  nop
1207 0x90107076:  nop
1208 @end example
1209
1210 @item
1211 Dump 80 16 bit values at the start of the video memory.
1212 @smallexample
1213 (qemu) xp/80hx 0xb8000
1214 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1215 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1216 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1217 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1218 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1219 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1220 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1221 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1222 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1223 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1224 @end smallexample
1225 @end itemize
1226
1227 @item p or print/@var{fmt} @var{expr}
1228
1229 Print expression value. Only the @var{format} part of @var{fmt} is
1230 used.
1231
1232 @item sendkey @var{keys}
1233
1234 Send @var{keys} to the emulator. Use @code{-} to press several keys
1235 simultaneously. Example:
1236 @example
1237 sendkey ctrl-alt-f1
1238 @end example
1239
1240 This command is useful to send keys that your graphical user interface
1241 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1242
1243 @item system_reset
1244
1245 Reset the system.
1246
1247 @item usb_add @var{devname}
1248
1249 Add the USB device @var{devname}.  For details of available devices see
1250 @ref{usb_devices}
1251
1252 @item usb_del @var{devname}
1253
1254 Remove the USB device @var{devname} from the QEMU virtual USB
1255 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1256 command @code{info usb} to see the devices you can remove.
1257
1258 @end table
1259
1260 @subsection Integer expressions
1261
1262 The monitor understands integers expressions for every integer
1263 argument. You can use register names to get the value of specifics
1264 CPU registers by prefixing them with @emph{$}.
1265
1266 @node disk_images
1267 @section Disk Images
1268
1269 Since version 0.6.1, QEMU supports many disk image formats, including
1270 growable disk images (their size increase as non empty sectors are
1271 written), compressed and encrypted disk images. Version 0.8.3 added
1272 the new qcow2 disk image format which is essential to support VM
1273 snapshots.
1274
1275 @menu
1276 * disk_images_quickstart::    Quick start for disk image creation
1277 * disk_images_snapshot_mode:: Snapshot mode
1278 * vm_snapshots::              VM snapshots
1279 * qemu_img_invocation::       qemu-img Invocation
1280 * host_drives::               Using host drives
1281 * disk_images_fat_images::    Virtual FAT disk images
1282 @end menu
1283
1284 @node disk_images_quickstart
1285 @subsection Quick start for disk image creation
1286
1287 You can create a disk image with the command:
1288 @example
1289 qemu-img create myimage.img mysize
1290 @end example
1291 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1292 size in kilobytes. You can add an @code{M} suffix to give the size in
1293 megabytes and a @code{G} suffix for gigabytes.
1294
1295 See @ref{qemu_img_invocation} for more information.
1296
1297 @node disk_images_snapshot_mode
1298 @subsection Snapshot mode
1299
1300 If you use the option @option{-snapshot}, all disk images are
1301 considered as read only. When sectors in written, they are written in
1302 a temporary file created in @file{/tmp}. You can however force the
1303 write back to the raw disk images by using the @code{commit} monitor
1304 command (or @key{C-a s} in the serial console).
1305
1306 @node vm_snapshots
1307 @subsection VM snapshots
1308
1309 VM snapshots are snapshots of the complete virtual machine including
1310 CPU state, RAM, device state and the content of all the writable
1311 disks. In order to use VM snapshots, you must have at least one non
1312 removable and writable block device using the @code{qcow2} disk image
1313 format. Normally this device is the first virtual hard drive.
1314
1315 Use the monitor command @code{savevm} to create a new VM snapshot or
1316 replace an existing one. A human readable name can be assigned to each
1317 snapshot in addition to its numerical ID.
1318
1319 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1320 a VM snapshot. @code{info snapshots} lists the available snapshots
1321 with their associated information:
1322
1323 @example
1324 (qemu) info snapshots
1325 Snapshot devices: hda
1326 Snapshot list (from hda):
1327 ID        TAG                 VM SIZE                DATE       VM CLOCK
1328 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1329 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1330 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1331 @end example
1332
1333 A VM snapshot is made of a VM state info (its size is shown in
1334 @code{info snapshots}) and a snapshot of every writable disk image.
1335 The VM state info is stored in the first @code{qcow2} non removable
1336 and writable block device. The disk image snapshots are stored in
1337 every disk image. The size of a snapshot in a disk image is difficult
1338 to evaluate and is not shown by @code{info snapshots} because the
1339 associated disk sectors are shared among all the snapshots to save
1340 disk space (otherwise each snapshot would need a full copy of all the
1341 disk images).
1342
1343 When using the (unrelated) @code{-snapshot} option
1344 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1345 but they are deleted as soon as you exit QEMU.
1346
1347 VM snapshots currently have the following known limitations:
1348 @itemize
1349 @item
1350 They cannot cope with removable devices if they are removed or
1351 inserted after a snapshot is done.
1352 @item
1353 A few device drivers still have incomplete snapshot support so their
1354 state is not saved or restored properly (in particular USB).
1355 @end itemize
1356
1357 @node qemu_img_invocation
1358 @subsection @code{qemu-img} Invocation
1359
1360 @include qemu-img.texi
1361
1362 @node host_drives
1363 @subsection Using host drives
1364
1365 In addition to disk image files, QEMU can directly access host
1366 devices. We describe here the usage for QEMU version >= 0.8.3.
1367
1368 @subsubsection Linux
1369
1370 On Linux, you can directly use the host device filename instead of a
1371 disk image filename provided you have enough privileges to access
1372 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1373 @file{/dev/fd0} for the floppy.
1374
1375 @table @code
1376 @item CD
1377 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1378 specific code to detect CDROM insertion or removal. CDROM ejection by
1379 the guest OS is supported. Currently only data CDs are supported.
1380 @item Floppy
1381 You can specify a floppy device even if no floppy is loaded. Floppy
1382 removal is currently not detected accurately (if you change floppy
1383 without doing floppy access while the floppy is not loaded, the guest
1384 OS will think that the same floppy is loaded).
1385 @item Hard disks
1386 Hard disks can be used. Normally you must specify the whole disk
1387 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1388 see it as a partitioned disk. WARNING: unless you know what you do, it
1389 is better to only make READ-ONLY accesses to the hard disk otherwise
1390 you may corrupt your host data (use the @option{-snapshot} command
1391 line option or modify the device permissions accordingly).
1392 @end table
1393
1394 @subsubsection Windows
1395
1396 @table @code
1397 @item CD
1398 The preferred syntax is the drive letter (e.g. @file{d:}). The
1399 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1400 supported as an alias to the first CDROM drive.
1401
1402 Currently there is no specific code to handle removable media, so it
1403 is better to use the @code{change} or @code{eject} monitor commands to
1404 change or eject media.
1405 @item Hard disks
1406 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1407 where @var{N} is the drive number (0 is the first hard disk).
1408
1409 WARNING: unless you know what you do, it is better to only make
1410 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1411 host data (use the @option{-snapshot} command line so that the
1412 modifications are written in a temporary file).
1413 @end table
1414
1415
1416 @subsubsection Mac OS X
1417
1418 @file{/dev/cdrom} is an alias to the first CDROM.
1419
1420 Currently there is no specific code to handle removable media, so it
1421 is better to use the @code{change} or @code{eject} monitor commands to
1422 change or eject media.
1423
1424 @node disk_images_fat_images
1425 @subsection Virtual FAT disk images
1426
1427 QEMU can automatically create a virtual FAT disk image from a
1428 directory tree. In order to use it, just type:
1429
1430 @example
1431 qemu linux.img -hdb fat:/my_directory
1432 @end example
1433
1434 Then you access access to all the files in the @file{/my_directory}
1435 directory without having to copy them in a disk image or to export
1436 them via SAMBA or NFS. The default access is @emph{read-only}.
1437
1438 Floppies can be emulated with the @code{:floppy:} option:
1439
1440 @example
1441 qemu linux.img -fda fat:floppy:/my_directory
1442 @end example
1443
1444 A read/write support is available for testing (beta stage) with the
1445 @code{:rw:} option:
1446
1447 @example
1448 qemu linux.img -fda fat:floppy:rw:/my_directory
1449 @end example
1450
1451 What you should @emph{never} do:
1452 @itemize
1453 @item use non-ASCII filenames ;
1454 @item use "-snapshot" together with ":rw:" ;
1455 @item expect it to work when loadvm'ing ;
1456 @item write to the FAT directory on the host system while accessing it with the guest system.
1457 @end itemize
1458
1459 @node pcsys_network
1460 @section Network emulation
1461
1462 QEMU can simulate several network cards (PCI or ISA cards on the PC
1463 target) and can connect them to an arbitrary number of Virtual Local
1464 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1465 VLAN. VLAN can be connected between separate instances of QEMU to
1466 simulate large networks. For simpler usage, a non privileged user mode
1467 network stack can replace the TAP device to have a basic network
1468 connection.
1469
1470 @subsection VLANs
1471
1472 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1473 connection between several network devices. These devices can be for
1474 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1475 (TAP devices).
1476
1477 @subsection Using TAP network interfaces
1478
1479 This is the standard way to connect QEMU to a real network. QEMU adds
1480 a virtual network device on your host (called @code{tapN}), and you
1481 can then configure it as if it was a real ethernet card.
1482
1483 @subsubsection Linux host
1484
1485 As an example, you can download the @file{linux-test-xxx.tar.gz}
1486 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1487 configure properly @code{sudo} so that the command @code{ifconfig}
1488 contained in @file{qemu-ifup} can be executed as root. You must verify
1489 that your host kernel supports the TAP network interfaces: the
1490 device @file{/dev/net/tun} must be present.
1491
1492 See @ref{sec_invocation} to have examples of command lines using the
1493 TAP network interfaces.
1494
1495 @subsubsection Windows host
1496
1497 There is a virtual ethernet driver for Windows 2000/XP systems, called
1498 TAP-Win32. But it is not included in standard QEMU for Windows,
1499 so you will need to get it separately. It is part of OpenVPN package,
1500 so download OpenVPN from : @url{http://openvpn.net/}.
1501
1502 @subsection Using the user mode network stack
1503
1504 By using the option @option{-net user} (default configuration if no
1505 @option{-net} option is specified), QEMU uses a completely user mode
1506 network stack (you don't need root privilege to use the virtual
1507 network). The virtual network configuration is the following:
1508
1509 @example
1510
1511          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1512                            |          (10.0.2.2)
1513                            |
1514                            ---->  DNS server (10.0.2.3)
1515                            |
1516                            ---->  SMB server (10.0.2.4)
1517 @end example
1518
1519 The QEMU VM behaves as if it was behind a firewall which blocks all
1520 incoming connections. You can use a DHCP client to automatically
1521 configure the network in the QEMU VM. The DHCP server assign addresses
1522 to the hosts starting from 10.0.2.15.
1523
1524 In order to check that the user mode network is working, you can ping
1525 the address 10.0.2.2 and verify that you got an address in the range
1526 10.0.2.x from the QEMU virtual DHCP server.
1527
1528 Note that @code{ping} is not supported reliably to the internet as it
1529 would require root privileges. It means you can only ping the local
1530 router (10.0.2.2).
1531
1532 When using the built-in TFTP server, the router is also the TFTP
1533 server.
1534
1535 When using the @option{-redir} option, TCP or UDP connections can be
1536 redirected from the host to the guest. It allows for example to
1537 redirect X11, telnet or SSH connections.
1538
1539 @subsection Connecting VLANs between QEMU instances
1540
1541 Using the @option{-net socket} option, it is possible to make VLANs
1542 that span several QEMU instances. See @ref{sec_invocation} to have a
1543 basic example.
1544
1545 @node direct_linux_boot
1546 @section Direct Linux Boot
1547
1548 This section explains how to launch a Linux kernel inside QEMU without
1549 having to make a full bootable image. It is very useful for fast Linux
1550 kernel testing.
1551
1552 The syntax is:
1553 @example
1554 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1555 @end example
1556
1557 Use @option{-kernel} to provide the Linux kernel image and
1558 @option{-append} to give the kernel command line arguments. The
1559 @option{-initrd} option can be used to provide an INITRD image.
1560
1561 When using the direct Linux boot, a disk image for the first hard disk
1562 @file{hda} is required because its boot sector is used to launch the
1563 Linux kernel.
1564
1565 If you do not need graphical output, you can disable it and redirect
1566 the virtual serial port and the QEMU monitor to the console with the
1567 @option{-nographic} option. The typical command line is:
1568 @example
1569 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1570      -append "root=/dev/hda console=ttyS0" -nographic
1571 @end example
1572
1573 Use @key{Ctrl-a c} to switch between the serial console and the
1574 monitor (@pxref{pcsys_keys}).
1575
1576 @node pcsys_usb
1577 @section USB emulation
1578
1579 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1580 virtual USB devices or real host USB devices (experimental, works only
1581 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1582 as necessary to connect multiple USB devices.
1583
1584 @menu
1585 * usb_devices::
1586 * host_usb_devices::
1587 @end menu
1588 @node usb_devices
1589 @subsection Connecting USB devices
1590
1591 USB devices can be connected with the @option{-usbdevice} commandline option
1592 or the @code{usb_add} monitor command.  Available devices are:
1593
1594 @table @code
1595 @item mouse
1596 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1597 @item tablet
1598 Pointer device that uses absolute coordinates (like a touchscreen).
1599 This means qemu is able to report the mouse position without having
1600 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1601 @item disk:@var{file}
1602 Mass storage device based on @var{file} (@pxref{disk_images})
1603 @item host:@var{bus.addr}
1604 Pass through the host device identified by @var{bus.addr}
1605 (Linux only)
1606 @item host:@var{vendor_id:product_id}
1607 Pass through the host device identified by @var{vendor_id:product_id}
1608 (Linux only)
1609 @item wacom-tablet
1610 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1611 above but it can be used with the tslib library because in addition to touch
1612 coordinates it reports touch pressure.
1613 @item keyboard
1614 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1615 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1616 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1617 device @var{dev}. The available character devices are the same as for the
1618 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1619 used to override the default 0403:6001. For instance, 
1620 @example
1621 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1622 @end example
1623 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1624 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1625 @item braille
1626 Braille device.  This will use BrlAPI to display the braille output on a real
1627 or fake device.
1628 @end table
1629
1630 @node host_usb_devices
1631 @subsection Using host USB devices on a Linux host
1632
1633 WARNING: this is an experimental feature. QEMU will slow down when
1634 using it. USB devices requiring real time streaming (i.e. USB Video
1635 Cameras) are not supported yet.
1636
1637 @enumerate
1638 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1639 is actually using the USB device. A simple way to do that is simply to
1640 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1641 to @file{mydriver.o.disabled}.
1642
1643 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1644 @example
1645 ls /proc/bus/usb
1646 001  devices  drivers
1647 @end example
1648
1649 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1650 @example
1651 chown -R myuid /proc/bus/usb
1652 @end example
1653
1654 @item Launch QEMU and do in the monitor:
1655 @example
1656 info usbhost
1657   Device 1.2, speed 480 Mb/s
1658     Class 00: USB device 1234:5678, USB DISK
1659 @end example
1660 You should see the list of the devices you can use (Never try to use
1661 hubs, it won't work).
1662
1663 @item Add the device in QEMU by using:
1664 @example
1665 usb_add host:1234:5678
1666 @end example
1667
1668 Normally the guest OS should report that a new USB device is
1669 plugged. You can use the option @option{-usbdevice} to do the same.
1670
1671 @item Now you can try to use the host USB device in QEMU.
1672
1673 @end enumerate
1674
1675 When relaunching QEMU, you may have to unplug and plug again the USB
1676 device to make it work again (this is a bug).
1677
1678 @node vnc_security
1679 @section VNC security
1680
1681 The VNC server capability provides access to the graphical console
1682 of the guest VM across the network. This has a number of security
1683 considerations depending on the deployment scenarios.
1684
1685 @menu
1686 * vnc_sec_none::
1687 * vnc_sec_password::
1688 * vnc_sec_certificate::
1689 * vnc_sec_certificate_verify::
1690 * vnc_sec_certificate_pw::
1691 * vnc_generate_cert::
1692 @end menu
1693 @node vnc_sec_none
1694 @subsection Without passwords
1695
1696 The simplest VNC server setup does not include any form of authentication.
1697 For this setup it is recommended to restrict it to listen on a UNIX domain
1698 socket only. For example
1699
1700 @example
1701 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1702 @end example
1703
1704 This ensures that only users on local box with read/write access to that
1705 path can access the VNC server. To securely access the VNC server from a
1706 remote machine, a combination of netcat+ssh can be used to provide a secure
1707 tunnel.
1708
1709 @node vnc_sec_password
1710 @subsection With passwords
1711
1712 The VNC protocol has limited support for password based authentication. Since
1713 the protocol limits passwords to 8 characters it should not be considered
1714 to provide high security. The password can be fairly easily brute-forced by
1715 a client making repeat connections. For this reason, a VNC server using password
1716 authentication should be restricted to only listen on the loopback interface
1717 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1718 option, and then once QEMU is running the password is set with the monitor. Until
1719 the monitor is used to set the password all clients will be rejected.
1720
1721 @example
1722 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1723 (qemu) change vnc password
1724 Password: ********
1725 (qemu)
1726 @end example
1727
1728 @node vnc_sec_certificate
1729 @subsection With x509 certificates
1730
1731 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1732 TLS for encryption of the session, and x509 certificates for authentication.
1733 The use of x509 certificates is strongly recommended, because TLS on its
1734 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1735 support provides a secure session, but no authentication. This allows any
1736 client to connect, and provides an encrypted session.
1737
1738 @example
1739 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1740 @end example
1741
1742 In the above example @code{/etc/pki/qemu} should contain at least three files,
1743 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1744 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1745 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1746 only be readable by the user owning it.
1747
1748 @node vnc_sec_certificate_verify
1749 @subsection With x509 certificates and client verification
1750
1751 Certificates can also provide a means to authenticate the client connecting.
1752 The server will request that the client provide a certificate, which it will
1753 then validate against the CA certificate. This is a good choice if deploying
1754 in an environment with a private internal certificate authority.
1755
1756 @example
1757 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1758 @end example
1759
1760
1761 @node vnc_sec_certificate_pw
1762 @subsection With x509 certificates, client verification and passwords
1763
1764 Finally, the previous method can be combined with VNC password authentication
1765 to provide two layers of authentication for clients.
1766
1767 @example
1768 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1769 (qemu) change vnc password
1770 Password: ********
1771 (qemu)
1772 @end example
1773
1774 @node vnc_generate_cert
1775 @subsection Generating certificates for VNC
1776
1777 The GNU TLS packages provides a command called @code{certtool} which can
1778 be used to generate certificates and keys in PEM format. At a minimum it
1779 is neccessary to setup a certificate authority, and issue certificates to
1780 each server. If using certificates for authentication, then each client
1781 will also need to be issued a certificate. The recommendation is for the
1782 server to keep its certificates in either @code{/etc/pki/qemu} or for
1783 unprivileged users in @code{$HOME/.pki/qemu}.
1784
1785 @menu
1786 * vnc_generate_ca::
1787 * vnc_generate_server::
1788 * vnc_generate_client::
1789 @end menu
1790 @node vnc_generate_ca
1791 @subsubsection Setup the Certificate Authority
1792
1793 This step only needs to be performed once per organization / organizational
1794 unit. First the CA needs a private key. This key must be kept VERY secret
1795 and secure. If this key is compromised the entire trust chain of the certificates
1796 issued with it is lost.
1797
1798 @example
1799 # certtool --generate-privkey > ca-key.pem
1800 @end example
1801
1802 A CA needs to have a public certificate. For simplicity it can be a self-signed
1803 certificate, or one issue by a commercial certificate issuing authority. To
1804 generate a self-signed certificate requires one core piece of information, the
1805 name of the organization.
1806
1807 @example
1808 # cat > ca.info <<EOF
1809 cn = Name of your organization
1810 ca
1811 cert_signing_key
1812 EOF
1813 # certtool --generate-self-signed \
1814            --load-privkey ca-key.pem
1815            --template ca.info \
1816            --outfile ca-cert.pem
1817 @end example
1818
1819 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1820 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1821
1822 @node vnc_generate_server
1823 @subsubsection Issuing server certificates
1824
1825 Each server (or host) needs to be issued with a key and certificate. When connecting
1826 the certificate is sent to the client which validates it against the CA certificate.
1827 The core piece of information for a server certificate is the hostname. This should
1828 be the fully qualified hostname that the client will connect with, since the client
1829 will typically also verify the hostname in the certificate. On the host holding the
1830 secure CA private key:
1831
1832 @example
1833 # cat > server.info <<EOF
1834 organization = Name  of your organization
1835 cn = server.foo.example.com
1836 tls_www_server
1837 encryption_key
1838 signing_key
1839 EOF
1840 # certtool --generate-privkey > server-key.pem
1841 # certtool --generate-certificate \
1842            --load-ca-certificate ca-cert.pem \
1843            --load-ca-privkey ca-key.pem \
1844            --load-privkey server server-key.pem \
1845            --template server.info \
1846            --outfile server-cert.pem
1847 @end example
1848
1849 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1850 to the server for which they were generated. The @code{server-key.pem} is security
1851 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1852
1853 @node vnc_generate_client
1854 @subsubsection Issuing client certificates
1855
1856 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1857 certificates as its authentication mechanism, each client also needs to be issued
1858 a certificate. The client certificate contains enough metadata to uniquely identify
1859 the client, typically organization, state, city, building, etc. On the host holding
1860 the secure CA private key:
1861
1862 @example
1863 # cat > client.info <<EOF
1864 country = GB
1865 state = London
1866 locality = London
1867 organiazation = Name of your organization
1868 cn = client.foo.example.com
1869 tls_www_client
1870 encryption_key
1871 signing_key
1872 EOF
1873 # certtool --generate-privkey > client-key.pem
1874 # certtool --generate-certificate \
1875            --load-ca-certificate ca-cert.pem \
1876            --load-ca-privkey ca-key.pem \
1877            --load-privkey client-key.pem \
1878            --template client.info \
1879            --outfile client-cert.pem
1880 @end example
1881
1882 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1883 copied to the client for which they were generated.
1884
1885 @node gdb_usage
1886 @section GDB usage
1887
1888 QEMU has a primitive support to work with gdb, so that you can do
1889 'Ctrl-C' while the virtual machine is running and inspect its state.
1890
1891 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1892 gdb connection:
1893 @example
1894 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1895        -append "root=/dev/hda"
1896 Connected to host network interface: tun0
1897 Waiting gdb connection on port 1234
1898 @end example
1899
1900 Then launch gdb on the 'vmlinux' executable:
1901 @example
1902 > gdb vmlinux
1903 @end example
1904
1905 In gdb, connect to QEMU:
1906 @example
1907 (gdb) target remote localhost:1234
1908 @end example
1909
1910 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1911 @example
1912 (gdb) c
1913 @end example
1914
1915 Here are some useful tips in order to use gdb on system code:
1916
1917 @enumerate
1918 @item
1919 Use @code{info reg} to display all the CPU registers.
1920 @item
1921 Use @code{x/10i $eip} to display the code at the PC position.
1922 @item
1923 Use @code{set architecture i8086} to dump 16 bit code. Then use
1924 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1925 @end enumerate
1926
1927 @node pcsys_os_specific
1928 @section Target OS specific information
1929
1930 @subsection Linux
1931
1932 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1933 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1934 color depth in the guest and the host OS.
1935
1936 When using a 2.6 guest Linux kernel, you should add the option
1937 @code{clock=pit} on the kernel command line because the 2.6 Linux
1938 kernels make very strict real time clock checks by default that QEMU
1939 cannot simulate exactly.
1940
1941 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1942 not activated because QEMU is slower with this patch. The QEMU
1943 Accelerator Module is also much slower in this case. Earlier Fedora
1944 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1945 patch by default. Newer kernels don't have it.
1946
1947 @subsection Windows
1948
1949 If you have a slow host, using Windows 95 is better as it gives the
1950 best speed. Windows 2000 is also a good choice.
1951
1952 @subsubsection SVGA graphic modes support
1953
1954 QEMU emulates a Cirrus Logic GD5446 Video
1955 card. All Windows versions starting from Windows 95 should recognize
1956 and use this graphic card. For optimal performances, use 16 bit color
1957 depth in the guest and the host OS.
1958
1959 If you are using Windows XP as guest OS and if you want to use high
1960 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1961 1280x1024x16), then you should use the VESA VBE virtual graphic card
1962 (option @option{-std-vga}).
1963
1964 @subsubsection CPU usage reduction
1965
1966 Windows 9x does not correctly use the CPU HLT
1967 instruction. The result is that it takes host CPU cycles even when
1968 idle. You can install the utility from
1969 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1970 problem. Note that no such tool is needed for NT, 2000 or XP.
1971
1972 @subsubsection Windows 2000 disk full problem
1973
1974 Windows 2000 has a bug which gives a disk full problem during its
1975 installation. When installing it, use the @option{-win2k-hack} QEMU
1976 option to enable a specific workaround. After Windows 2000 is
1977 installed, you no longer need this option (this option slows down the
1978 IDE transfers).
1979
1980 @subsubsection Windows 2000 shutdown
1981
1982 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1983 can. It comes from the fact that Windows 2000 does not automatically
1984 use the APM driver provided by the BIOS.
1985
1986 In order to correct that, do the following (thanks to Struan
1987 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1988 Add/Troubleshoot a device => Add a new device & Next => No, select the
1989 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1990 (again) a few times. Now the driver is installed and Windows 2000 now
1991 correctly instructs QEMU to shutdown at the appropriate moment.
1992
1993 @subsubsection Share a directory between Unix and Windows
1994
1995 See @ref{sec_invocation} about the help of the option @option{-smb}.
1996
1997 @subsubsection Windows XP security problem
1998
1999 Some releases of Windows XP install correctly but give a security
2000 error when booting:
2001 @example
2002 A problem is preventing Windows from accurately checking the
2003 license for this computer. Error code: 0x800703e6.
2004 @end example
2005
2006 The workaround is to install a service pack for XP after a boot in safe
2007 mode. Then reboot, and the problem should go away. Since there is no
2008 network while in safe mode, its recommended to download the full
2009 installation of SP1 or SP2 and transfer that via an ISO or using the
2010 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2011
2012 @subsection MS-DOS and FreeDOS
2013
2014 @subsubsection CPU usage reduction
2015
2016 DOS does not correctly use the CPU HLT instruction. The result is that
2017 it takes host CPU cycles even when idle. You can install the utility
2018 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2019 problem.
2020
2021 @node QEMU System emulator for non PC targets
2022 @chapter QEMU System emulator for non PC targets
2023
2024 QEMU is a generic emulator and it emulates many non PC
2025 machines. Most of the options are similar to the PC emulator. The
2026 differences are mentioned in the following sections.
2027
2028 @menu
2029 * QEMU PowerPC System emulator::
2030 * Sparc32 System emulator::
2031 * Sparc64 System emulator::
2032 * MIPS System emulator::
2033 * ARM System emulator::
2034 * ColdFire System emulator::
2035 @end menu
2036
2037 @node QEMU PowerPC System emulator
2038 @section QEMU PowerPC System emulator
2039
2040 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2041 or PowerMac PowerPC system.
2042
2043 QEMU emulates the following PowerMac peripherals:
2044
2045 @itemize @minus
2046 @item
2047 UniNorth PCI Bridge
2048 @item
2049 PCI VGA compatible card with VESA Bochs Extensions
2050 @item
2051 2 PMAC IDE interfaces with hard disk and CD-ROM support
2052 @item
2053 NE2000 PCI adapters
2054 @item
2055 Non Volatile RAM
2056 @item
2057 VIA-CUDA with ADB keyboard and mouse.
2058 @end itemize
2059
2060 QEMU emulates the following PREP peripherals:
2061
2062 @itemize @minus
2063 @item
2064 PCI Bridge
2065 @item
2066 PCI VGA compatible card with VESA Bochs Extensions
2067 @item
2068 2 IDE interfaces with hard disk and CD-ROM support
2069 @item
2070 Floppy disk
2071 @item
2072 NE2000 network adapters
2073 @item
2074 Serial port
2075 @item
2076 PREP Non Volatile RAM
2077 @item
2078 PC compatible keyboard and mouse.
2079 @end itemize
2080
2081 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2082 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2083
2084 @c man begin OPTIONS
2085
2086 The following options are specific to the PowerPC emulation:
2087
2088 @table @option
2089
2090 @item -g WxH[xDEPTH]
2091
2092 Set the initial VGA graphic mode. The default is 800x600x15.
2093
2094 @end table
2095
2096 @c man end
2097
2098
2099 More information is available at
2100 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2101
2102 @node Sparc32 System emulator
2103 @section Sparc32 System emulator
2104
2105 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2106 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2107 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2108 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2109 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2110 of usable CPUs to 4.
2111
2112 QEMU emulates the following sun4m/sun4d peripherals:
2113
2114 @itemize @minus
2115 @item
2116 IOMMU or IO-UNITs
2117 @item
2118 TCX Frame buffer
2119 @item
2120 Lance (Am7990) Ethernet
2121 @item
2122 Non Volatile RAM M48T08
2123 @item
2124 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2125 and power/reset logic
2126 @item
2127 ESP SCSI controller with hard disk and CD-ROM support
2128 @item
2129 Floppy drive (not on SS-600MP)
2130 @item
2131 CS4231 sound device (only on SS-5, not working yet)
2132 @end itemize
2133
2134 The number of peripherals is fixed in the architecture.  Maximum
2135 memory size depends on the machine type, for SS-5 it is 256MB and for
2136 others 2047MB.
2137
2138 Since version 0.8.2, QEMU uses OpenBIOS
2139 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2140 firmware implementation. The goal is to implement a 100% IEEE
2141 1275-1994 (referred to as Open Firmware) compliant firmware.
2142
2143 A sample Linux 2.6 series kernel and ram disk image are available on
2144 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2145 Solaris kernels don't work.
2146
2147 @c man begin OPTIONS
2148
2149 The following options are specific to the Sparc32 emulation:
2150
2151 @table @option
2152
2153 @item -g WxHx[xDEPTH]
2154
2155 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2156 the only other possible mode is 1024x768x24.
2157
2158 @item -prom-env string
2159
2160 Set OpenBIOS variables in NVRAM, for example:
2161
2162 @example
2163 qemu-system-sparc -prom-env 'auto-boot?=false' \
2164  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2165 @end example
2166
2167 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2168
2169 Set the emulated machine type. Default is SS-5.
2170
2171 @end table
2172
2173 @c man end
2174
2175 @node Sparc64 System emulator
2176 @section Sparc64 System emulator
2177
2178 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2179 The emulator is not usable for anything yet.
2180
2181 QEMU emulates the following sun4u peripherals:
2182
2183 @itemize @minus
2184 @item
2185 UltraSparc IIi APB PCI Bridge
2186 @item
2187 PCI VGA compatible card with VESA Bochs Extensions
2188 @item
2189 Non Volatile RAM M48T59
2190 @item
2191 PC-compatible serial ports
2192 @end itemize
2193
2194 @node MIPS System emulator
2195 @section MIPS System emulator
2196
2197 Four executables cover simulation of 32 and 64-bit MIPS systems in
2198 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2199 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2200 Five different machine types are emulated:
2201
2202 @itemize @minus
2203 @item
2204 A generic ISA PC-like machine "mips"
2205 @item
2206 The MIPS Malta prototype board "malta"
2207 @item
2208 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2209 @item
2210 MIPS emulator pseudo board "mipssim"
2211 @item
2212 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2213 @end itemize
2214
2215 The generic emulation is supported by Debian 'Etch' and is able to
2216 install Debian into a virtual disk image. The following devices are
2217 emulated:
2218
2219 @itemize @minus
2220 @item
2221 A range of MIPS CPUs, default is the 24Kf
2222 @item
2223 PC style serial port
2224 @item
2225 PC style IDE disk
2226 @item
2227 NE2000 network card
2228 @end itemize
2229
2230 The Malta emulation supports the following devices:
2231
2232 @itemize @minus
2233 @item
2234 Core board with MIPS 24Kf CPU and Galileo system controller
2235 @item
2236 PIIX4 PCI/USB/SMbus controller
2237 @item
2238 The Multi-I/O chip's serial device
2239 @item
2240 PCnet32 PCI network card
2241 @item
2242 Malta FPGA serial device
2243 @item
2244 Cirrus VGA graphics card
2245 @end itemize
2246
2247 The ACER Pica emulation supports:
2248
2249 @itemize @minus
2250 @item
2251 MIPS R4000 CPU
2252 @item
2253 PC-style IRQ and DMA controllers
2254 @item
2255 PC Keyboard
2256 @item
2257 IDE controller
2258 @end itemize
2259
2260 The mipssim pseudo board emulation provides an environment similiar
2261 to what the proprietary MIPS emulator uses for running Linux.
2262 It supports:
2263
2264 @itemize @minus
2265 @item
2266 A range of MIPS CPUs, default is the 24Kf
2267 @item
2268 PC style serial port
2269 @item
2270 MIPSnet network emulation
2271 @end itemize
2272
2273 The MIPS Magnum R4000 emulation supports:
2274
2275 @itemize @minus
2276 @item
2277 MIPS R4000 CPU
2278 @item
2279 PC-style IRQ controller
2280 @item
2281 PC Keyboard
2282 @item
2283 SCSI controller
2284 @item
2285 G364 framebuffer
2286 @end itemize
2287
2288
2289 @node ARM System emulator
2290 @section ARM System emulator
2291
2292 Use the executable @file{qemu-system-arm} to simulate a ARM
2293 machine. The ARM Integrator/CP board is emulated with the following
2294 devices:
2295
2296 @itemize @minus
2297 @item
2298 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2299 @item
2300 Two PL011 UARTs
2301 @item
2302 SMC 91c111 Ethernet adapter
2303 @item
2304 PL110 LCD controller
2305 @item
2306 PL050 KMI with PS/2 keyboard and mouse.
2307 @item
2308 PL181 MultiMedia Card Interface with SD card.
2309 @end itemize
2310
2311 The ARM Versatile baseboard is emulated with the following devices:
2312
2313 @itemize @minus
2314 @item
2315 ARM926E, ARM1136 or Cortex-A8 CPU
2316 @item
2317 PL190 Vectored Interrupt Controller
2318 @item
2319 Four PL011 UARTs
2320 @item
2321 SMC 91c111 Ethernet adapter
2322 @item
2323 PL110 LCD controller
2324 @item
2325 PL050 KMI with PS/2 keyboard and mouse.
2326 @item
2327 PCI host bridge.  Note the emulated PCI bridge only provides access to
2328 PCI memory space.  It does not provide access to PCI IO space.
2329 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2330 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2331 mapped control registers.
2332 @item
2333 PCI OHCI USB controller.
2334 @item
2335 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2336 @item
2337 PL181 MultiMedia Card Interface with SD card.
2338 @end itemize
2339
2340 The ARM RealView Emulation baseboard is emulated with the following devices:
2341
2342 @itemize @minus
2343 @item
2344 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2345 @item
2346 ARM AMBA Generic/Distributed Interrupt Controller
2347 @item
2348 Four PL011 UARTs
2349 @item
2350 SMC 91c111 Ethernet adapter
2351 @item
2352 PL110 LCD controller
2353 @item
2354 PL050 KMI with PS/2 keyboard and mouse
2355 @item
2356 PCI host bridge
2357 @item
2358 PCI OHCI USB controller
2359 @item
2360 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2361 @item
2362 PL181 MultiMedia Card Interface with SD card.
2363 @end itemize
2364
2365 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2366 and "Terrier") emulation includes the following peripherals:
2367
2368 @itemize @minus
2369 @item
2370 Intel PXA270 System-on-chip (ARM V5TE core)
2371 @item
2372 NAND Flash memory
2373 @item
2374 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2375 @item
2376 On-chip OHCI USB controller
2377 @item
2378 On-chip LCD controller
2379 @item
2380 On-chip Real Time Clock
2381 @item
2382 TI ADS7846 touchscreen controller on SSP bus
2383 @item
2384 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2385 @item
2386 GPIO-connected keyboard controller and LEDs
2387 @item
2388 Secure Digital card connected to PXA MMC/SD host
2389 @item
2390 Three on-chip UARTs
2391 @item
2392 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2393 @end itemize
2394
2395 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2396 following elements:
2397
2398 @itemize @minus
2399 @item
2400 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2401 @item
2402 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2403 @item
2404 On-chip LCD controller
2405 @item
2406 On-chip Real Time Clock
2407 @item
2408 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2409 CODEC, connected through MicroWire and I@math{^2}S busses
2410 @item
2411 GPIO-connected matrix keypad
2412 @item
2413 Secure Digital card connected to OMAP MMC/SD host
2414 @item
2415 Three on-chip UARTs
2416 @end itemize
2417
2418 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2419 devices:
2420
2421 @itemize @minus
2422 @item
2423 Cortex-M3 CPU core.
2424 @item
2425 64k Flash and 8k SRAM.
2426 @item
2427 Timers, UARTs, ADC and I@math{^2}C interface.
2428 @item
2429 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2430 @end itemize
2431
2432 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2433 devices:
2434
2435 @itemize @minus
2436 @item
2437 Cortex-M3 CPU core.
2438 @item
2439 256k Flash and 64k SRAM.
2440 @item
2441 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2442 @item
2443 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2444 @end itemize
2445
2446 A Linux 2.6 test image is available on the QEMU web site. More
2447 information is available in the QEMU mailing-list archive.
2448
2449 @node ColdFire System emulator
2450 @section ColdFire System emulator
2451
2452 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2453 The emulator is able to boot a uClinux kernel.
2454
2455 The M5208EVB emulation includes the following devices:
2456
2457 @itemize @minus
2458 @item
2459 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2460 @item
2461 Three Two on-chip UARTs.
2462 @item
2463 Fast Ethernet Controller (FEC)
2464 @end itemize
2465
2466 The AN5206 emulation includes the following devices:
2467
2468 @itemize @minus
2469 @item
2470 MCF5206 ColdFire V2 Microprocessor.
2471 @item
2472 Two on-chip UARTs.
2473 @end itemize
2474
2475 @node QEMU User space emulator
2476 @chapter QEMU User space emulator
2477
2478 @menu
2479 * Supported Operating Systems ::
2480 * Linux User space emulator::
2481 * Mac OS X/Darwin User space emulator ::
2482 @end menu
2483
2484 @node Supported Operating Systems
2485 @section Supported Operating Systems
2486
2487 The following OS are supported in user space emulation:
2488
2489 @itemize @minus
2490 @item
2491 Linux (referred as qemu-linux-user)
2492 @item
2493 Mac OS X/Darwin (referred as qemu-darwin-user)
2494 @end itemize
2495
2496 @node Linux User space emulator
2497 @section Linux User space emulator
2498
2499 @menu
2500 * Quick Start::
2501 * Wine launch::
2502 * Command line options::
2503 * Other binaries::
2504 @end menu
2505
2506 @node Quick Start
2507 @subsection Quick Start
2508
2509 In order to launch a Linux process, QEMU needs the process executable
2510 itself and all the target (x86) dynamic libraries used by it.
2511
2512 @itemize
2513
2514 @item On x86, you can just try to launch any process by using the native
2515 libraries:
2516
2517 @example
2518 qemu-i386 -L / /bin/ls
2519 @end example
2520
2521 @code{-L /} tells that the x86 dynamic linker must be searched with a
2522 @file{/} prefix.
2523
2524 @item Since QEMU is also a linux process, you can launch qemu with
2525 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2526
2527 @example
2528 qemu-i386 -L / qemu-i386 -L / /bin/ls
2529 @end example
2530
2531 @item On non x86 CPUs, you need first to download at least an x86 glibc
2532 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2533 @code{LD_LIBRARY_PATH} is not set:
2534
2535 @example
2536 unset LD_LIBRARY_PATH
2537 @end example
2538
2539 Then you can launch the precompiled @file{ls} x86 executable:
2540
2541 @example
2542 qemu-i386 tests/i386/ls
2543 @end example
2544 You can look at @file{qemu-binfmt-conf.sh} so that
2545 QEMU is automatically launched by the Linux kernel when you try to
2546 launch x86 executables. It requires the @code{binfmt_misc} module in the
2547 Linux kernel.
2548
2549 @item The x86 version of QEMU is also included. You can try weird things such as:
2550 @example
2551 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2552           /usr/local/qemu-i386/bin/ls-i386
2553 @end example
2554
2555 @end itemize
2556
2557 @node Wine launch
2558 @subsection Wine launch
2559
2560 @itemize
2561
2562 @item Ensure that you have a working QEMU with the x86 glibc
2563 distribution (see previous section). In order to verify it, you must be
2564 able to do:
2565
2566 @example
2567 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2568 @end example
2569
2570 @item Download the binary x86 Wine install
2571 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2572
2573 @item Configure Wine on your account. Look at the provided script
2574 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2575 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2576
2577 @item Then you can try the example @file{putty.exe}:
2578
2579 @example
2580 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2581           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2582 @end example
2583
2584 @end itemize
2585
2586 @node Command line options
2587 @subsection Command line options
2588
2589 @example
2590 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2591 @end example
2592
2593 @table @option
2594 @item -h
2595 Print the help
2596 @item -L path
2597 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2598 @item -s size
2599 Set the x86 stack size in bytes (default=524288)
2600 @end table
2601
2602 Debug options:
2603
2604 @table @option
2605 @item -d
2606 Activate log (logfile=/tmp/qemu.log)
2607 @item -p pagesize
2608 Act as if the host page size was 'pagesize' bytes
2609 @end table
2610
2611 Environment variables:
2612
2613 @table @env
2614 @item QEMU_STRACE
2615 Print system calls and arguments similar to the 'strace' program
2616 (NOTE: the actual 'strace' program will not work because the user
2617 space emulator hasn't implemented ptrace).  At the moment this is
2618 incomplete.  All system calls that don't have a specific argument
2619 format are printed with information for six arguments.  Many
2620 flag-style arguments don't have decoders and will show up as numbers.
2621 @end table
2622
2623 @node Other binaries
2624 @subsection Other binaries
2625
2626 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2627 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2628 configurations), and arm-uclinux bFLT format binaries.
2629
2630 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2631 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2632 coldfire uClinux bFLT format binaries.
2633
2634 The binary format is detected automatically.
2635
2636 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2637 (Sparc64 CPU, 32 bit ABI).
2638
2639 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2640 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2641
2642 @node Mac OS X/Darwin User space emulator
2643 @section Mac OS X/Darwin User space emulator
2644
2645 @menu
2646 * Mac OS X/Darwin Status::
2647 * Mac OS X/Darwin Quick Start::
2648 * Mac OS X/Darwin Command line options::
2649 @end menu
2650
2651 @node Mac OS X/Darwin Status
2652 @subsection Mac OS X/Darwin Status
2653
2654 @itemize @minus
2655 @item
2656 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2657 @item
2658 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2659 @item
2660 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2661 @item
2662 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2663 @end itemize
2664
2665 [1] If you're host commpage can be executed by qemu.
2666
2667 @node Mac OS X/Darwin Quick Start
2668 @subsection Quick Start
2669
2670 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2671 itself and all the target dynamic libraries used by it. If you don't have the FAT
2672 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2673 CD or compile them by hand.
2674
2675 @itemize
2676
2677 @item On x86, you can just try to launch any process by using the native
2678 libraries:
2679
2680 @example
2681 qemu-i386 /bin/ls
2682 @end example
2683
2684 or to run the ppc version of the executable:
2685
2686 @example
2687 qemu-ppc /bin/ls
2688 @end example
2689
2690 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2691 are installed:
2692
2693 @example
2694 qemu-i386 -L /opt/x86_root/ /bin/ls
2695 @end example
2696
2697 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2698 @file{/opt/x86_root/usr/bin/dyld}.
2699
2700 @end itemize
2701
2702 @node Mac OS X/Darwin Command line options
2703 @subsection Command line options
2704
2705 @example
2706 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2707 @end example
2708
2709 @table @option
2710 @item -h
2711 Print the help
2712 @item -L path
2713 Set the library root path (default=/)
2714 @item -s size
2715 Set the stack size in bytes (default=524288)
2716 @end table
2717
2718 Debug options:
2719
2720 @table @option
2721 @item -d
2722 Activate log (logfile=/tmp/qemu.log)
2723 @item -p pagesize
2724 Act as if the host page size was 'pagesize' bytes
2725 @end table
2726
2727 @node compilation
2728 @chapter Compilation from the sources
2729
2730 @menu
2731 * Linux/Unix::
2732 * Windows::
2733 * Cross compilation for Windows with Linux::
2734 * Mac OS X::
2735 @end menu
2736
2737 @node Linux/Unix
2738 @section Linux/Unix
2739
2740 @subsection Compilation
2741
2742 First you must decompress the sources:
2743 @example
2744 cd /tmp
2745 tar zxvf qemu-x.y.z.tar.gz
2746 cd qemu-x.y.z
2747 @end example
2748
2749 Then you configure QEMU and build it (usually no options are needed):
2750 @example
2751 ./configure
2752 make
2753 @end example
2754
2755 Then type as root user:
2756 @example
2757 make install
2758 @end example
2759 to install QEMU in @file{/usr/local}.
2760
2761 @subsection GCC version
2762
2763 In order to compile QEMU successfully, it is very important that you
2764 have the right tools. The most important one is gcc. On most hosts and
2765 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2766 Linux distribution includes a gcc 4.x compiler, you can usually
2767 install an older version (it is invoked by @code{gcc32} or
2768 @code{gcc34}). The QEMU configure script automatically probes for
2769 these older versions so that usually you don't have to do anything.
2770
2771 @node Windows
2772 @section Windows
2773
2774 @itemize
2775 @item Install the current versions of MSYS and MinGW from
2776 @url{http://www.mingw.org/}. You can find detailed installation
2777 instructions in the download section and the FAQ.
2778
2779 @item Download
2780 the MinGW development library of SDL 1.2.x
2781 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2782 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2783 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2784 directory. Edit the @file{sdl-config} script so that it gives the
2785 correct SDL directory when invoked.
2786
2787 @item Extract the current version of QEMU.
2788
2789 @item Start the MSYS shell (file @file{msys.bat}).
2790
2791 @item Change to the QEMU directory. Launch @file{./configure} and
2792 @file{make}.  If you have problems using SDL, verify that
2793 @file{sdl-config} can be launched from the MSYS command line.
2794
2795 @item You can install QEMU in @file{Program Files/Qemu} by typing
2796 @file{make install}. Don't forget to copy @file{SDL.dll} in
2797 @file{Program Files/Qemu}.
2798
2799 @end itemize
2800
2801 @node Cross compilation for Windows with Linux
2802 @section Cross compilation for Windows with Linux
2803
2804 @itemize
2805 @item
2806 Install the MinGW cross compilation tools available at
2807 @url{http://www.mingw.org/}.
2808
2809 @item
2810 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2811 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2812 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2813 the QEMU configuration script.
2814
2815 @item
2816 Configure QEMU for Windows cross compilation:
2817 @example
2818 ./configure --enable-mingw32
2819 @end example
2820 If necessary, you can change the cross-prefix according to the prefix
2821 chosen for the MinGW tools with --cross-prefix. You can also use
2822 --prefix to set the Win32 install path.
2823
2824 @item You can install QEMU in the installation directory by typing
2825 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2826 installation directory.
2827
2828 @end itemize
2829
2830 Note: Currently, Wine does not seem able to launch
2831 QEMU for Win32.
2832
2833 @node Mac OS X
2834 @section Mac OS X
2835
2836 The Mac OS X patches are not fully merged in QEMU, so you should look
2837 at the QEMU mailing list archive to have all the necessary
2838 information.
2839
2840 @node Index
2841 @chapter Index
2842 @printindex cp
2843
2844 @bye