TOSC DAC i2c qdev voncersion
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
29
30 #include "etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA           (0x0 / 4)
35 #define RW_SAVED_DATA     (0x58 / 4)
36 #define RW_SAVED_DATA_BUF (0x5c / 4)
37 #define RW_GROUP          (0x60 / 4)
38 #define RW_GROUP_DOWN     (0x7c / 4)
39 #define RW_CMD            (0x80 / 4)
40 #define RW_CFG            (0x84 / 4)
41 #define RW_STAT           (0x88 / 4)
42 #define RW_INTR_MASK      (0x8c / 4)
43 #define RW_ACK_INTR       (0x90 / 4)
44 #define R_INTR            (0x94 / 4)
45 #define R_MASKED_INTR     (0x98 / 4)
46 #define RW_STREAM_CMD     (0x9c / 4)
47
48 #define DMA_REG_MAX       (0x100 / 4)
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54   struct dma_descr_group       *next;
55   unsigned                      eol        : 1;
56   unsigned                      tol        : 1;
57   unsigned                      bol        : 1;
58   unsigned                                 : 1;
59   unsigned                      intr       : 1;
60   unsigned                                 : 2;
61   unsigned                      en         : 1;
62   unsigned                                 : 7;
63   unsigned                      dis        : 1;
64   unsigned                      md         : 16;
65   struct dma_descr_group       *up;
66   union {
67     struct dma_descr_context   *context;
68     struct dma_descr_group     *group;
69   }                             down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74   struct dma_descr_context     *next;
75   unsigned                      eol        : 1;
76   unsigned                                 : 3;
77   unsigned                      intr       : 1;
78   unsigned                                 : 1;
79   unsigned                      store_mode : 1;
80   unsigned                      en         : 1;
81   unsigned                                 : 7;
82   unsigned                      dis        : 1;
83   unsigned                      md0        : 16;
84   unsigned                      md1;
85   unsigned                      md2;
86   unsigned                      md3;
87   unsigned                      md4;
88   struct dma_descr_data        *saved_data;
89   char                         *saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94   struct dma_descr_data        *next;
95   char                         *buf;
96   unsigned                      eol        : 1;
97   unsigned                                 : 2;
98   unsigned                      out_eop    : 1;
99   unsigned                      intr       : 1;
100   unsigned                      wait       : 1;
101   unsigned                                 : 2;
102   unsigned                                 : 3;
103   unsigned                      in_eop     : 1;
104   unsigned                                 : 4;
105   unsigned                      md         : 16;
106   char                         *after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111   regk_dma_ack_pkt                         = 0x00000100,
112   regk_dma_anytime                         = 0x00000001,
113   regk_dma_array                           = 0x00000008,
114   regk_dma_burst                           = 0x00000020,
115   regk_dma_client                          = 0x00000002,
116   regk_dma_copy_next                       = 0x00000010,
117   regk_dma_copy_up                         = 0x00000020,
118   regk_dma_data_at_eol                     = 0x00000001,
119   regk_dma_dis_c                           = 0x00000010,
120   regk_dma_dis_g                           = 0x00000020,
121   regk_dma_idle                            = 0x00000001,
122   regk_dma_intern                          = 0x00000004,
123   regk_dma_load_c                          = 0x00000200,
124   regk_dma_load_c_n                        = 0x00000280,
125   regk_dma_load_c_next                     = 0x00000240,
126   regk_dma_load_d                          = 0x00000140,
127   regk_dma_load_g                          = 0x00000300,
128   regk_dma_load_g_down                     = 0x000003c0,
129   regk_dma_load_g_next                     = 0x00000340,
130   regk_dma_load_g_up                       = 0x00000380,
131   regk_dma_next_en                         = 0x00000010,
132   regk_dma_next_pkt                        = 0x00000010,
133   regk_dma_no                              = 0x00000000,
134   regk_dma_only_at_wait                    = 0x00000000,
135   regk_dma_restore                         = 0x00000020,
136   regk_dma_rst                             = 0x00000001,
137   regk_dma_running                         = 0x00000004,
138   regk_dma_rw_cfg_default                  = 0x00000000,
139   regk_dma_rw_cmd_default                  = 0x00000000,
140   regk_dma_rw_intr_mask_default            = 0x00000000,
141   regk_dma_rw_stat_default                 = 0x00000101,
142   regk_dma_rw_stream_cmd_default           = 0x00000000,
143   regk_dma_save_down                       = 0x00000020,
144   regk_dma_save_up                         = 0x00000020,
145   regk_dma_set_reg                         = 0x00000050,
146   regk_dma_set_w_size1                     = 0x00000190,
147   regk_dma_set_w_size2                     = 0x000001a0,
148   regk_dma_set_w_size4                     = 0x000001c0,
149   regk_dma_stopped                         = 0x00000002,
150   regk_dma_store_c                         = 0x00000002,
151   regk_dma_store_descr                     = 0x00000000,
152   regk_dma_store_g                         = 0x00000004,
153   regk_dma_store_md                        = 0x00000001,
154   regk_dma_sw                              = 0x00000008,
155   regk_dma_update_down                     = 0x00000020,
156   regk_dma_yes                             = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161         RST = 1,
162         STOPPED = 2,
163         RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168         qemu_irq *irq;
169         struct etraxfs_dma_client *client;
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         int map;
189         CPUState *env;
190
191         int nr_channels;
192         struct fs_dma_channel *channels;
193
194         QEMUBH *bh;
195 };
196
197 static void DMA_run(void *opaque);
198 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
199
200 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
201 {
202         return ctrl->channels[c].regs[reg];
203 }
204
205 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
206 {
207         return channel_reg(ctrl, c, RW_CFG) & 2;
208 }
209
210 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
211 {
212         return (channel_reg(ctrl, c, RW_CFG) & 1)
213                 && ctrl->channels[c].client;
214 }
215
216 static inline int fs_channel(target_phys_addr_t addr)
217 {
218         /* Every channel has a 0x2000 ctrl register map.  */
219         return addr >> 13;
220 }
221
222 #ifdef USE_THIS_DEAD_CODE
223 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
224 {
225         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
226
227         /* Load and decode. FIXME: handle endianness.  */
228         cpu_physical_memory_read (addr, 
229                                   (void *) &ctrl->channels[c].current_g, 
230                                   sizeof ctrl->channels[c].current_g);
231 }
232
233 static void dump_c(int ch, struct dma_descr_context *c)
234 {
235         printf("%s ch=%d\n", __func__, ch);
236         printf("next=%p\n", c->next);
237         printf("saved_data=%p\n", c->saved_data);
238         printf("saved_data_buf=%p\n", c->saved_data_buf);
239         printf("eol=%x\n", (uint32_t) c->eol);
240 }
241
242 static void dump_d(int ch, struct dma_descr_data *d)
243 {
244         printf("%s ch=%d\n", __func__, ch);
245         printf("next=%p\n", d->next);
246         printf("buf=%p\n", d->buf);
247         printf("after=%p\n", d->after);
248         printf("intr=%x\n", (uint32_t) d->intr);
249         printf("out_eop=%x\n", (uint32_t) d->out_eop);
250         printf("in_eop=%x\n", (uint32_t) d->in_eop);
251         printf("eol=%x\n", (uint32_t) d->eol);
252 }
253 #endif
254
255 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
256 {
257         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
258
259         /* Load and decode. FIXME: handle endianness.  */
260         cpu_physical_memory_read (addr, 
261                                   (void *) &ctrl->channels[c].current_c, 
262                                   sizeof ctrl->channels[c].current_c);
263
264         D(dump_c(c, &ctrl->channels[c].current_c));
265         /* I guess this should update the current pos.  */
266         ctrl->channels[c].regs[RW_SAVED_DATA] =
267                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
268         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
269                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
270 }
271
272 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
273 {
274         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
275
276         /* Load and decode. FIXME: handle endianness.  */
277         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
278         cpu_physical_memory_read (addr,
279                                   (void *) &ctrl->channels[c].current_d, 
280                                   sizeof ctrl->channels[c].current_d);
281
282         D(dump_d(c, &ctrl->channels[c].current_d));
283         ctrl->channels[c].regs[RW_DATA] = addr;
284 }
285
286 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
287 {
288         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
289
290         /* Encode and store. FIXME: handle endianness.  */
291         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
292         D(dump_d(c, &ctrl->channels[c].current_d));
293         cpu_physical_memory_write (addr,
294                                   (void *) &ctrl->channels[c].current_c,
295                                   sizeof ctrl->channels[c].current_c);
296 }
297
298 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
299 {
300         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
301
302         /* Encode and store. FIXME: handle endianness.  */
303         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
304         cpu_physical_memory_write (addr,
305                                   (void *) &ctrl->channels[c].current_d, 
306                                   sizeof ctrl->channels[c].current_d);
307 }
308
309 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
310 {
311         /* FIXME:  */
312 }
313
314 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
315 {
316         if (ctrl->channels[c].client)
317         {
318                 ctrl->channels[c].eol = 0;
319                 ctrl->channels[c].state = RUNNING;
320                 if (!ctrl->channels[c].input)
321                         channel_out_run(ctrl, c);
322         } else
323                 printf("WARNING: starting DMA ch %d with no client\n", c);
324
325         qemu_bh_schedule_idle(ctrl->bh);
326 }
327
328 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
329 {
330         if (!channel_en(ctrl, c) 
331             || channel_stopped(ctrl, c)
332             || ctrl->channels[c].state != RUNNING
333             /* Only reload the current data descriptor if it has eol set.  */
334             || !ctrl->channels[c].current_d.eol) {
335                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
336                          c, ctrl->channels[c].state,
337                          channel_stopped(ctrl, c),
338                          channel_en(ctrl,c),
339                          ctrl->channels[c].eol));
340                 D(dump_d(c, &ctrl->channels[c].current_d));
341                 return;
342         }
343
344         /* Reload the current descriptor.  */
345         channel_load_d(ctrl, c);
346
347         /* If the current descriptor cleared the eol flag and we had already
348            reached eol state, do the continue.  */
349         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
350                 D(printf("continue %d ok %p\n", c,
351                          ctrl->channels[c].current_d.next));
352                 ctrl->channels[c].regs[RW_SAVED_DATA] =
353                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
354                 channel_load_d(ctrl, c);
355                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
356                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
357
358                 channel_start(ctrl, c);
359         }
360         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
361                 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
362 }
363
364 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
365 {
366         unsigned int cmd = v & ((1 << 10) - 1);
367
368         D(printf("%s ch=%d cmd=%x\n",
369                  __func__, c, cmd));
370         if (cmd & regk_dma_load_d) {
371                 channel_load_d(ctrl, c);
372                 if (cmd & regk_dma_burst)
373                         channel_start(ctrl, c);
374         }
375
376         if (cmd & regk_dma_load_c) {
377                 channel_load_c(ctrl, c);
378         }
379 }
380
381 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
382 {
383         D(printf("%s %d\n", __func__, c));
384         ctrl->channels[c].regs[R_INTR] &=
385                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
386
387         ctrl->channels[c].regs[R_MASKED_INTR] =
388                 ctrl->channels[c].regs[R_INTR]
389                 & ctrl->channels[c].regs[RW_INTR_MASK];
390
391         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
392                  c,
393                  ctrl->channels[c].regs[R_MASKED_INTR]));
394
395         qemu_set_irq(ctrl->channels[c].irq[0],
396                      !!ctrl->channels[c].regs[R_MASKED_INTR]);
397 }
398
399 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
400 {
401         uint32_t len;
402         uint32_t saved_data_buf;
403         unsigned char buf[2 * 1024];
404
405         if (ctrl->channels[c].eol)
406                 return 0;
407
408         do {
409                 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
410                          c,
411                          (uint32_t)ctrl->channels[c].current_d.buf,
412                          (uint32_t)ctrl->channels[c].current_d.after,
413                          saved_data_buf));
414
415                 channel_load_d(ctrl, c);
416                 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
417                 len = (uint32_t)(unsigned long)
418                         ctrl->channels[c].current_d.after;
419                 len -= saved_data_buf;
420
421                 if (len > sizeof buf)
422                         len = sizeof buf;
423                 cpu_physical_memory_read (saved_data_buf, buf, len);
424
425                 D(printf("channel %d pushes %x %u bytes\n", c, 
426                          saved_data_buf, len));
427
428                 if (ctrl->channels[c].client->client.push)
429                         ctrl->channels[c].client->client.push(
430                                 ctrl->channels[c].client->client.opaque,
431                                 buf, len);
432                 else
433                         printf("WARNING: DMA ch%d dataloss,"
434                                " no attached client.\n", c);
435
436                 saved_data_buf += len;
437
438                 if (saved_data_buf == (uint32_t)(unsigned long)
439                                 ctrl->channels[c].current_d.after) {
440                         /* Done. Step to next.  */
441                         if (ctrl->channels[c].current_d.out_eop) {
442                                 /* TODO: signal eop to the client.  */
443                                 D(printf("signal eop\n"));
444                         }
445                         if (ctrl->channels[c].current_d.intr) {
446                                 /* TODO: signal eop to the client.  */
447                                 /* data intr.  */
448                                 D(printf("signal intr %d eol=%d\n",
449                                         len, ctrl->channels[c].current_d.eol));
450                                 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
451                                 channel_update_irq(ctrl, c);
452                         }
453                         channel_store_d(ctrl, c);
454                         if (ctrl->channels[c].current_d.eol) {
455                                 D(printf("channel %d EOL\n", c));
456                                 ctrl->channels[c].eol = 1;
457
458                                 /* Mark the context as disabled.  */
459                                 ctrl->channels[c].current_c.dis = 1;
460                                 channel_store_c(ctrl, c);
461
462                                 channel_stop(ctrl, c);
463                         } else {
464                                 ctrl->channels[c].regs[RW_SAVED_DATA] =
465                                         (uint32_t)(unsigned long)ctrl->
466                                                 channels[c].current_d.next;
467                                 /* Load new descriptor.  */
468                                 channel_load_d(ctrl, c);
469                                 saved_data_buf = (uint32_t)(unsigned long)
470                                         ctrl->channels[c].current_d.buf;
471                         }
472
473                         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
474                                                         saved_data_buf;
475                         D(dump_d(c, &ctrl->channels[c].current_d));
476                 }
477                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
478         } while (!ctrl->channels[c].eol);
479         return 1;
480 }
481
482 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
483                               unsigned char *buf, int buflen, int eop)
484 {
485         uint32_t len;
486         uint32_t saved_data_buf;
487
488         if (ctrl->channels[c].eol == 1)
489                 return 0;
490
491         channel_load_d(ctrl, c);
492         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
493         len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
494         len -= saved_data_buf;
495         
496         if (len > buflen)
497                 len = buflen;
498
499         cpu_physical_memory_write (saved_data_buf, buf, len);
500         saved_data_buf += len;
501
502         if (saved_data_buf ==
503             (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
504             || eop) {
505                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
506
507                 D(printf("in dscr end len=%d\n", 
508                          ctrl->channels[c].current_d.after
509                          - ctrl->channels[c].current_d.buf));
510                 ctrl->channels[c].current_d.after = 
511                         (void *)(unsigned long) saved_data_buf;
512
513                 /* Done. Step to next.  */
514                 if (ctrl->channels[c].current_d.intr) {
515                         /* TODO: signal eop to the client.  */
516                         /* data intr.  */
517                         ctrl->channels[c].regs[R_INTR] |= 3;
518                 }
519                 if (eop) {
520                         ctrl->channels[c].current_d.in_eop = 1;
521                         ctrl->channels[c].regs[R_INTR] |= 8;
522                 }
523                 if (r_intr != ctrl->channels[c].regs[R_INTR])
524                         channel_update_irq(ctrl, c);
525
526                 channel_store_d(ctrl, c);
527                 D(dump_d(c, &ctrl->channels[c].current_d));
528
529                 if (ctrl->channels[c].current_d.eol) {
530                         D(printf("channel %d EOL\n", c));
531                         ctrl->channels[c].eol = 1;
532
533                         /* Mark the context as disabled.  */
534                         ctrl->channels[c].current_c.dis = 1;
535                         channel_store_c(ctrl, c);
536
537                         channel_stop(ctrl, c);
538                 } else {
539                         ctrl->channels[c].regs[RW_SAVED_DATA] =
540                                 (uint32_t)(unsigned long)ctrl->
541                                         channels[c].current_d.next;
542                         /* Load new descriptor.  */
543                         channel_load_d(ctrl, c);
544                         saved_data_buf = (uint32_t)(unsigned long)
545                                 ctrl->channels[c].current_d.buf;
546                 }
547         }
548
549         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
550         return len;
551 }
552
553 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
554 {
555         if (ctrl->channels[c].client->client.pull) {
556                 ctrl->channels[c].client->client.pull(
557                         ctrl->channels[c].client->client.opaque);
558                 return 1;
559         } else
560                 return 0;
561 }
562
563 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
564 {
565         hw_error("Unsupported short access. reg=" TARGET_FMT_plx "\n", addr);
566         return 0;
567 }
568
569 static uint32_t
570 dma_readl (void *opaque, target_phys_addr_t addr)
571 {
572         struct fs_dma_ctrl *ctrl = opaque;
573         int c;
574         uint32_t r = 0;
575
576         /* Make addr relative to this channel and bounded to nr regs.  */
577         c = fs_channel(addr);
578         addr &= 0xff;
579         addr >>= 2;
580         switch (addr)
581         {
582                 case RW_STAT:
583                         r = ctrl->channels[c].state & 7;
584                         r |= ctrl->channels[c].eol << 5;
585                         r |= ctrl->channels[c].stream_cmd_src << 8;
586                         break;
587
588                 default:
589                         r = ctrl->channels[c].regs[addr];
590                         D(printf ("%s c=%d addr=%x\n",
591                                   __func__, c, addr));
592                         break;
593         }
594         return r;
595 }
596
597 static void
598 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
599 {
600         hw_error("Unsupported short access. reg=" TARGET_FMT_plx "\n", addr);
601 }
602
603 static void
604 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
605 {
606         if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
607                 if (ctrl->channels[c].regs[RW_CFG] & 2)
608                         ctrl->channels[c].state = STOPPED;
609                 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
610                         ctrl->channels[c].state = RST;
611         }
612 }
613
614 static void
615 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
616 {
617         struct fs_dma_ctrl *ctrl = opaque;
618         int c;
619
620         /* Make addr relative to this channel and bounded to nr regs.  */
621         c = fs_channel(addr);
622         addr &= 0xff;
623         addr >>= 2;
624         switch (addr)
625         {
626                 case RW_DATA:
627                         ctrl->channels[c].regs[addr] = value;
628                         break;
629
630                 case RW_CFG:
631                         ctrl->channels[c].regs[addr] = value;
632                         dma_update_state(ctrl, c);
633                         break;
634                 case RW_CMD:
635                         /* continue.  */
636                         if (value & ~1)
637                                 printf("Invalid store to ch=%d RW_CMD %x\n",
638                                        c, value);
639                         ctrl->channels[c].regs[addr] = value;
640                         channel_continue(ctrl, c);
641                         break;
642
643                 case RW_SAVED_DATA:
644                 case RW_SAVED_DATA_BUF:
645                 case RW_GROUP:
646                 case RW_GROUP_DOWN:
647                         ctrl->channels[c].regs[addr] = value;
648                         break;
649
650                 case RW_ACK_INTR:
651                 case RW_INTR_MASK:
652                         ctrl->channels[c].regs[addr] = value;
653                         channel_update_irq(ctrl, c);
654                         if (addr == RW_ACK_INTR)
655                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
656                         break;
657
658                 case RW_STREAM_CMD:
659                         if (value & ~1023)
660                                 printf("Invalid store to ch=%d "
661                                        "RW_STREAMCMD %x\n",
662                                        c, value);
663                         ctrl->channels[c].regs[addr] = value;
664                         D(printf("stream_cmd ch=%d\n", c));
665                         channel_stream_cmd(ctrl, c, value);
666                         break;
667
668                 default:
669                         D(printf ("%s c=%d %x %x\n", __func__, c, addr));
670                         break;
671         }
672 }
673
674 static CPUReadMemoryFunc *dma_read[] = {
675         &dma_rinvalid,
676         &dma_rinvalid,
677         &dma_readl,
678 };
679
680 static CPUWriteMemoryFunc *dma_write[] = {
681         &dma_winvalid,
682         &dma_winvalid,
683         &dma_writel,
684 };
685
686 static int etraxfs_dmac_run(void *opaque)
687 {
688         struct fs_dma_ctrl *ctrl = opaque;
689         int i;
690         int p = 0;
691
692         for (i = 0; 
693              i < ctrl->nr_channels;
694              i++)
695         {
696                 if (ctrl->channels[i].state == RUNNING)
697                 {
698                         if (ctrl->channels[i].input) {
699                                 p += channel_in_run(ctrl, i);
700                         } else {
701                                 p += channel_out_run(ctrl, i);
702                         }
703                 }
704         }
705         return p;
706 }
707
708 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
709                        void *buf, int len, int eop)
710 {
711         return channel_in_process(client->ctrl, client->channel, 
712                                   buf, len, eop);
713 }
714
715 /* Connect an IRQ line with a channel.  */
716 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
717 {
718         struct fs_dma_ctrl *ctrl = opaque;
719         ctrl->channels[c].irq = line;
720         ctrl->channels[c].input = input;
721 }
722
723 void etraxfs_dmac_connect_client(void *opaque, int c, 
724                                  struct etraxfs_dma_client *cl)
725 {
726         struct fs_dma_ctrl *ctrl = opaque;
727         cl->ctrl = ctrl;
728         cl->channel = c;
729         ctrl->channels[c].client = cl;
730 }
731
732
733 static void DMA_run(void *opaque)
734 {
735     struct fs_dma_ctrl *etraxfs_dmac = opaque;
736     int p = 1;
737
738     if (vm_running)
739         p = etraxfs_dmac_run(etraxfs_dmac);
740
741     if (p)
742         qemu_bh_schedule_idle(etraxfs_dmac->bh);
743 }
744
745 void *etraxfs_dmac_init(CPUState *env, 
746                         target_phys_addr_t base, int nr_channels)
747 {
748         struct fs_dma_ctrl *ctrl = NULL;
749
750         ctrl = qemu_mallocz(sizeof *ctrl);
751
752         ctrl->bh = qemu_bh_new(DMA_run, ctrl);
753
754         ctrl->env = env;
755         ctrl->nr_channels = nr_channels;
756         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
757
758         ctrl->map = cpu_register_io_memory(0, dma_read, dma_write, ctrl);
759         cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
760         return ctrl;
761 }